STOL Directives

ITOS Edition
$Date: 2006/10/03 19:01:55 $

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

STOL Directives 1

STOL Directives

Each of the following sections contains a summary of the directive syntax which conforms

to the following conventions:

Words in all capitals are literal keywords, and should be provided as-is.

All symbols except square brackets (‘[1’), vertical bar (‘|’), elipses (‘. ..’) and expan-
sion (‘==>") are literal.

Anything in square brackets (‘[1’) is optional.

The symbol ‘|’ means "or", so ‘THIS|THAT' means you can supply one of the literal
strings "this" or "that".

Words in italics are formal parameters for which a further syntax summary and or
explanation will be provided.

Normal text is explanatory material; for example: In ‘NAME = filename’, ‘filename’ is
neither literal or a formal parameter. It is explaining that a filename should be given.

Elipses (‘. ..’) mean that you may supply more than one of the preceding elements.

The symbol ‘==>’ following a formal parameter means "is replaced by". It us used to
show what syntax may replace a formal parameter.

Syntactic elements must be provided in the order given unless otherwise noted.

Commas must be provided only as and where given in the syntax.

Formal parameters often are accompanied by their own syntax summary, which may

in turn contain further formal parameters. Indented lines under the definition of a formal
parameter give additional information on that parameter, and take two forms:

Lines beginning with a formal parameter (italicised word) followed by ‘==>’ expand the
meaning of that parameter.

Other lines, often beginning with a literal keyword, provide Background PROC "test"
(ID# 1234) options which may be given for the formal parameter in question. If no
elipses follow the parameter in the syntax, then only one option may substitute for it;
else more than one option may be given. When multiple options are given, order is not
important unless otherwise noted.

STOL is not case sensitive. All directives, variables, and mnemonics can be given in

either or mixed case. String values in STOL may be case sensitive.

ACQUIRE Control telemetry acquisition.

ARCHIVE Control transfer frame or packet archiving.
ASK Request interactive input.

BREAK Break out of a DO loop.

BLIND Turn command verification on or off.
BYPASS Bypass command frame acceptance checks.
CFGMON Control the configuration monitor/equation processor.
CLEAR Clear the command buffer.

CLOSE Close a device used by READ or WRITE.
CMD Send A Spacecraft Command.
CONTINUE Start The Next Iteration Of A DO Loop.

$Date: 2006/10/03 19:01:55 §$

STOL Directives

DATE
DISABLE
DO
DUMPFILE
ELSE
ELSEIF
ENABLE
ENDDO
ENDIF
ENDPROC
FREE

GET
GLOBAL
GO

GOTO
GPIB
HOTKEY
IF
KILLPROC
LET
LIMITS
LOAD
LOCAL
LOG
MODE
OPEN
PAGE
PKTDUMP
PKTTIMEOUT
PLAYBACK
PLOT
PREVIEW
PROC
PURGE
QUIT
RAW
RAWTF
RRAW
READ
REM
RESET
RESYNC
RETRLIM
RETRY
RETURN
SCEVENT

Set (Or Query) The TCW'’s Idea Of GMT.

Disable Commanding.

Begin A DO WHILE Or DO UNTIL Loop.

Specify Dumpfile Name.

Begin The ELSE Clause In A Compound IF.

Begin An ELSEIF Clause In A Compound IF.
Enable A Set Of Directives.

End A DO WHILE Or DO UNTIL Loop.

End A Compound IF.

End A Proc File.

Destroy Local Or Global Variables.

Get values from programmable devices.

Create Global Variables.

Resume A Waiting Proc.

Jump To The Specified Line In A Proc.

Control GPIB device.

Report stol status.

Simple Or Compound IF.

Kill All Procs.

Assign A Variable Or Mnemonic.

Control Limit Checking.

(LOADPKT) Send Image Load File To Spacecraft.
Create Local Variables.

Control Event Message Logging.

Modify Command Mode Parameters.

Open File Or Device For READ Or WRITE.
Control Display Pages.

Control Packet Dumps.

Control Packet Timeout.

Play back an archive.

Control Plots.

Control Directive Preview mode.

The First Directive In A Proc.

Remove Pending Commands From The Sent-Queue.
Terminate Stol.

Send A Spacecraft Command Via Raw CCSDS Telecommand Packet.
Send A Spacecraft Command Via Raw Transfer Frame.
Send A Spacecraft Command Via Raw Packet w/o headers.
Read From A File Or Serial Port.

Echo A Comment To The Event Log.

Set Spacecraft’s Next Expected Seq Number To 0.
Synch Ground And Spacecraft Frame Seq. Number.
Set Max Number Of Auto Cmd Retransmissions.
Retransmit All Pending Commands.

Return From A Proc.

Send a Spacecraft Event (Used only by Triana STOL).

$Date: 2006/10/03 19:01:55 $

STOL Directives

SEND
SEQPRT
SET
SETCOEF
SETGRND
SETVR
SHOVAL
SIM
SNAP
SPEED
START
STOP
STRIPCHART
SYSTEM
TFDUMP
TIMEON
TIMEOUT
UNLOCK
VC
VERIFY
WAIT
WRITE
ZERO

Transmit The Command Buffer To The Spacecraft.
Control Sequential Prints.

Control programmable devices.

Control Analog Conversion Coefficients.

Set Ground’s Next Expected Frame Seq Number.
Set Spacecraft’s and Ground’s Next Expected Frame Seq Number.
Echo Expressions To The Event Log.

Control The Internal Simulator.

Take Page Snapshots.

Control Proc Execution Speed.

Start A Proc.

Abort An Image Load.

Control a stripchart.

Issue a UNIX command.

Control Transfer Frame Dumps.

Perform Timeon Calculations.

Set Time Interval For Command Acknowledgement.
Unlock The Spacecraft’s FARM.

Specify the Default Virtual Channel For Commands.
Compare Image Files.

Halt A Proc.

Write To A File Or Serial Port.

Clear ITOS counters

$Date: 2006/10/03 19:01:55 §$

ACQUIRE 4

ACQUIRE

The ACQUIRE directive controls telemetry acquisition.

Syntax

ACQUIRE [ATTACH | MOD] [station] [filter ...]
ACQUIRE may be abbreviated AC.

Start unpacking data or modify the filtering on a telemetry stream this work-
station is unpacking.

station — is a telemetry source name (or alias).
filter — [ADD | DROP] [NOT] [vcspec ...]
vespec — veid [ADD | DROP] [NOT] [ALL | appidlist]
veid — VCOo | VC1 | ... | VC7

appid list —
appid [, appid] ...

ACQUIRE DETACH station
Stop unpacking data from the given station.

ACQUIRE OFF

Stop all data unpacking on this workstation.

ACQUIRE QUERY

List stations (data sources) from which this workstation is acquiring and un-
packing data.

Discussion

The acquire directive controls the unpacking of telemetry values into the Current Value
Table (cvT).

Entering acquire without attach or detach starts unpacking telemetry from the given
station. All previously entered acquires are automatically given an acquire off.

The acquire attach directive starts unpacking data from the given station without
interferring with telemetry from other stations. acquire detach stops unpacking data
from the given station (only).

$Date: 2006/10/03 19:01:55 §$

ACQUIRE 5

The acquire mod directive changes the filter on unpacking data from the given station.
See below for more information on filtering.

The station argument must be the name assigned to a telemetry source in the Source
Description File. The same source may have several names, and one source may be assigned
the name default. This default source will be used if no station is specified.

The filter argument tells the system what data to acquire from the given station. The
filter basically is a list of virtual channel 1Ds, each optionally followed by a list of application
1Ds. This gives the list of telemetry packets you wish to unpack. A vcCID alone or followed
by the keyword all selects all APPIDs on that channel.

The filter keyword not changes the sense of the filter from positive (get me these packets)
to negative (get me everything ezcept these packets). You can use the not before the whole
list of items, or before a list of APPIDs in a vecspec. Note that double negatives are possible,
but frowned upon.

The filter keywords add and drop are used in conjunction with the acquire argument
mod to change the filter on an existing acquisition. Their use is evident from their names:
add adds the given list of APPIDS to the list already being unpacked for the given station;
and del deletes the given list of APPIDS to the list.

Entering acquire by itself will start unpacking all packets on the virtual channel given
by gbl_tm_defvc from the default station.

The acquire off directive stops all telemetry unpacking on the workstation where it’s
exectuted. To stop a single acquisition when more than one is running, use acquire detach.
To perform a modification like stopping decommutation of a virtual channel, use acquire
mod with a filter containing the keyword drop.

By convention, the acquire sim directive starts acquisition of data from the internal
simulator, but a properly formatted ‘sim’ entry in the ‘ctrlsource.dat’ file is required to
support this. Simulated values can be changed with the sSiM CHG directive.

$Date: 2006/10/03 19:01:55 §$

ARCHIVE 6

ARCHIVE

The ARCHIVE directive controls the processes that archive transfer frames and packets.

Syntax

ARCHIVE [station| [option ...] [filter]

ARCHIVE may be abbreviated AR.
Start archiving telemetry data to a file.
station — identifies the telemetry source.

option — PKT | FRAME
ID =id
FILE = filename
POOLSIZE = size
WRAPPERS = wrappers

wrappers
"wrapperl [wrapper2] ..."

filter — if the PKT option given, a packet filter; else, a frame filter

frame filter —
[ADD | DROP] [NOT] [ALL | vcid ...]

packet filter —
vcid [ADD | DROP] [NOT] [ALL | appid_list]

veid — veo | vel | ... | vC7
appid_list —

appid [, appid] ...
ARCHIVE QUERY

Reports what’s currently being archived.

ARCHIVE STOP option

Stops archiving.

option — ALL
FILE = filename
ID =1id

$Date: 2006/10/03 19:01:55 §$

ARCHIVE 7

Discussion

The archive directive controls the way 1TOS stores telemetry data into archive files.
Archives are composed of one or more like-sized data files and a header file, and may hold
frames or packets. Archive data files have an upcounting integer suffix counting from 0,
while the header files have an ".H" suffix. Archives are created in the directory given by
GBL_TM_ARCHDIR.

Use the first form given above to open a new archive or modify the filter on an already-
open archive. (More about filters below.) Specify the station argument to select the data
source providing the data you wish to archive, when more than one source is in use. Valid
station names are in the Source Configuration File, and spacecraft data is the default source.
When the data source is from an archive playback use "playback" as the source. Entering
simply archive with no arguments opens an archive for all spacecraft data.

Specify the pkt option to archive packets and the frame to archive frames. The default
is frame.

For new archives, the archive software automatically will generate a filename from the
current date and time; however, you can use the file option to specify a different filename.

Instead of giving a filename, you can use the id option to identify the archive. The ID
assigned to an archive with this option can then be used to refer to it in subsequent archive
directives (in the same 1TOS session). Any string may be used as the archive ID.

The poolsize option is provided for controlling the size of the individual archive data
files. The default anticipates storing a 64 kilobit stream for 15 minutes and is set to just
under 7.4 megabytes.

The wrappers option is provided for packet archives to specify the ordered list of wrap-
pers to be added to each packet in the archive. Currently annol2 and annol2aos are
the only annotation wrappers available. The wrapper list must be space seperated list of
wrapper names within a set of double quotes.

The filter controls what data is stored in the archive. For frame archives, the filter con-
sists of a list of virtual channel 1Ds; for packet archives, the filter consists of application IDs.
See the explanation of the filter argument to the ACQUIRE directive for more information.
Just remember not to give any APPID lists when specifying the filter for a frame archive.

Use the archive query directive to get a report on what archives currently are open
and what their filtering is. (The filter report doesn’t work terribly well for packet archive
unless they’re small.) The report will include the archive ID, if you assigned one, and the
archive filename along with the filter.

Use the archive stop directive to close archives. archive stop all closes all archives
for all stations. To close a particular archive, use the id or file option to specify which
archive to close.

$Date: 2006/10/03 19:01:55 §$

ASK 8

ASK

Ask the operator a question in a pop-up window.

Syntax
ASK prompt|, variable]
prompt A string constant or parenthesized expression; the character \n split
the prompt into multiple lines.
variable A variable name. If no variable is specified, a variable called ANSWER
is assumed. If ANSWER does not exist, global ANSWER will be created.
Discussion

The ASK directive creates a popup window and suspends the current proc until the popup
is dismissed. The popup displays the prompt string, has space for the test conductor to
enter a response, and has an ok and a cancel button. The popup is dismissed when either
button is clicked. If ok is clicked, the response (a string) gets assigned to the variable; if
abort is clicked, the variable is unchanged.

STOL will not accept the ASK directive unless a proc is running.
Interactive directives are allowed while the popup is displayed.

Occasionally it’s convenient for procs to ask the user whether or not to continue, instead
of asking for a value. Here’s one way:
answer = 0
ask "click OK to continue, ABORT to abort"
if (isint(answer)) return

rem ; OK ... continuing ...
The TODATE function is useful when asking for a date:
local date

ask "Enter the date"
date = todate(answer)

Finally, the STRTOL function lets you ask for a binary, octal, or hex value:

local binary, octal, hex
ask "Enter binary value"
binary = strtol(answer,2)
ask "Enter octal value"
octal = strtol(answer,8)
ask "Enter hex value"
hex = strtol(answer,16)

$Date: 2006/10/03 19:01:55 §$

BREAK 9

BREAK

Break out of a DO loop.

Syntax

BREAK

Discussion

The BREAK directive can only be used inside a DO loop, and is described with the DO
directive. See [DO], page 20.

$Date: 2006/10/03 19:01:55 §$

BLIND 10

BLIND

Turn CCSDS command verification on or off.

Syntax

BLIND ON | OFF

Discussion

The BLIND directive turns CCSDS command verification on or off. When command
verification is off, the CLCW is not examined to determine which commands have been
received by the FARM. Commands sent in blind mode automatically are purged from the
Sent Queue.

This directive may optionally have a preceding slash, as in /BLIND ON. It is allowed only
when commanding is enabled (see [ENABLE], page 24).

See GBL_FOPSTATE 0 for a method of determining whether or not blind commanding
is in effect.

$Date: 2006/10/03 19:01:55 §$

BYPASS 11

BYPASS

Turn BYPASS FLAG on or off in CCSDS command transfer frames.

Syntax

BYPASS ON | OFF

Discussion

The BYPASS directive controls whether or not the TC Transfer Frame BYPASS FLAG
is set on subsequent commands. When the BYPASS FLAG is set, the spacecraft FARM
bypasses its normal Frame Acceptance Checks. (The FARM applies Frame Validation
Checks regardless of the setting of the BYPASS FLAG).

A BYPASS ON directive causes the BYPASS FLAG to be set on subsequent commands; a
BYPASS OFF directives causes the BYPASS FLAG to be clear on subsequent commands. In
normal operations the BYPASS FLAG is clear.

The BYPASS directive is used in emergency situations to force in data-carrying frames
without regard for their sequentiality or for the command window in effect. It can also
be used whenever telemetry is not available in order to avoid command verification failure
(i.e. commands cannot be verified when telemetry is not avaliable). See section “Spacecraft
Commands” in The ITOS Command Subsystem.

This directive may optionally have a preceding slash, as in /BLIND ON. It is allowed only
when commanding is enabled (see [ENABLE], page 24).

$Date: 2006/10/03 19:01:55 §$

CFGMON 12

CFGMON

Start or Stop a configuration monitor.

Syntax

CFGMON configuration
CFGMON CLEAR [configuration | ALL|

configuration
identifies which configuration monitor definition to start or stop.

Discussion

$Date: 2006/10/03 19:01:55 §$

CLEAR 13

CLEAR

Clear the command buffer.

Syntax

CLEAR

Discussion

The CLEAR directive is used to remove all commands currently in the command buffer.
This directive may optionally have a preceding slash, as in /CLEAR.

This directive is only allowed when commanding is enabled (see [ENABLE], page 24).
This directive is not allowed when a LOAD (see [LOAD], page 44) is in progress.

$Date: 2006/10/03 19:01:55 §$

CLOSE 14

CLOSE
Close an open device unit.
Syntax
CLOSE (unit)
unit is the same that was specified in the OPEN directive (see [OPEN],
page 49).
Discussion

The CLOSE directive closes a unit previously opened with the OPEN directive.

$Date: 2006/10/03 19:01:55 §$

CMD 15

CMD

Send a spacecraft command.

Syntax
CMD cmdmnemonic field=value, ...
/ cmdmnemonic field=value, ...
cmdmnemonic
The name of a command mnemonic, as specified in the database.
field The name of a field for cmdmnemonic, as specified in the database.
value The value for field. Either an expression or the name of a discrete
value for field, as specified in the database.
“field=value”
may be shortened to “value” when value is a discrete value and
only one of cmdmnemonic’s fields uses that discrete value.
Discussion

The CMD directive sends a spacecraft command. CMD may optionally have a preceding
slash, as in /CMD SNOOP.

This directive is only allowed when commanding is enabled (see [ENABLE], page 24).

Each command has zero or more fields. A value for each field may be specified (not more
than once) in the CMD directive. The value for a field may be specified as an expression or by
naming one of the field’s discrete values. If a field has a discrete value named “DEFAULT”,
that field is optional and does not have to be specified in the CMD directive.

The field’s limits and global mnemonic gbl rangechk determine whether or not the field’s
value can be specified via expression. If gbl rangechk is 0 (useful, for example, during I&T),
the value may be specified via expression. Otherwise, if the field has at least one limit and
the value is within the field’s limits, the value may be specified via expression.

CMD examples:

/ANOP
/AECLIPSE ON

/MMMLOAD ADDRESS=50, NUMBYTES=2, VALUES=1
/MMMTABSEL tabid=1, selectram, dump

If the command is critical or hazardous then a POPUP window will open and require
the operator to authorize the release of the command. Hazardous commands require a
pass phrase to also be entered in the POPUP window that is compared against the global
mnemonic variable GBL_STOLHAZ PHRASE.

$Date: 2006/10/03 19:01:55 §$

CONTINUE 16

CONTINUE

Goto the ENDDO of a DO loop.

Syntax

CONTINUE

Discussion

The CONTINUE directive can only be used inside a DO loop, and is described with the DO
directive (See [DO], page 20) and is only valid in STOL procs.

$Date: 2006/10/03 19:01:55 §$

DATE 17

DATE

Set or query the ITOS GMT offset.

Syntax
DATE
DATE date
DATE SYNC [, year]
date A date constant or expression.
year An int constant or expression. Must range from 39 to 99(1900’s),
2 to 38(2000’s), or 1902 to 2038.
Discussion

The DATE directive is used to set the TCW’s idea of Greenwich Mean Time. This is
done by adjusting global mnemonic gbl_gmtoff which contains the offset in seconds from
the TCW’s internal clock and the simulated GMT.

There are three forms of the DATE directive:

DATE Query the current GMT:
DATE = Current date: 93-200-15:09:45:013000

DATE date Set the TCW’s idea of GMT to the specified time. To advance the TCW'’s
notion of GMT by one hour use DATE POQGBL_GMTOFF + 60*60. DATE 94-124-
16:24:38 is an example of syncing to a specific date/time.

DATE SYNC [, year]
Synchronize the TCW with the the date source. If no year is specified, the
current year is assumed. The date source is identified by gbl date_source,
gbl_date_txport, and gbl date_type.

$Date: 2006/10/03 19:01:55 §$

DISABLE 18

DISABLE

The Disable an 1TOS subsystem or query status.

Syntax

DISABLE subsystem [STATUS=variable]

subsystem
Identifies the subsystem. May be one of CMD, DSP, GPIB, or TLM.

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive
the status from the directive. States are 1 == SUCCESS, 0 == no
change, -1 == ERROR.

Disable an 1TOS subsystem. Each of these directives enables a suite of STOL
directives and terminates certain processes related to the indicated subsystem.

e CMD - Disable the spacecraft command directives and terminates the
fopmux, fop, and cmd_transmit programs. If the command simulator
is running it will be terminated as well.

e TLM - Disable the telemetry directives and terminate the telemetry
controller(tmController) and the t1mClcw and t1mStatic programs.

e DSP - Disable the display control directives, terminate the base pages
and the data pointer server(dp_server) and Java display server(IJServer)
programs.

e GPIB - Disable the GPIB/RS232 control directives and terminate the
deviceDriver program if running.

DISABLE QUERY [STATUS=variable]

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive
the status from the directive. The value returned is an integer with
a bit weight as follows to identify if a subsystem is disabled:

‘8’ CMD is enabled.
‘4’ DSP is enabled.

‘2 GPIB is enabled.
‘1’ TLM is enabled.

Print to the event log the list of subsystems and whether each is enabled or
disabled. If a STATUS variable is option is used, A integer value is returned as
in the example below:

global x

disable query status=x
if (BWAND(x, 1) .EQ. 0) enable tlm

$Date: 2006/10/03 19:01:55 §$

DISABLE 19

In the above example, if x is returned the value of 4, this indicates the DSP
system is enabled and everthing else is disabled. This would cause the IF to
evaluate true and the "enable tlm" directive would be issued.

If STATUS variable is not used then a status message for each subsystem will
print in the event log as below:

STOL_MSG: The cmd subsystem is DISABLED
STOL_MSG: The display subsystem is ENABLED
STOL_MSG: The GPIB subsystem is DISABLED
STOL_MSG: The telemetry subsystem is ENABLED

Discussion

Disables the specified subsystem. See [ENABLE], page 24 for opposite directive.

$Date: 2006/10/03 19:01:55 $

DO 20

DO

The DO (and related) directives control looping in stol procs.

Syntax

DO WHILE (condition)
DO UNTIL (condition)

condition is any integral expression.

Discussion

DO WHILE A DO WHILE loop repeats as long as its condition evaluates non-0. A DO WHILE
loop tests its condition at the top of the loop; if the condition is initially 0 the
body of the loop is skipped.

DO UNTIL A DO UNTIL loop repeats as long as its condition evaluates to 0. A DO UNTIL
loop tests its condition at the bottom of the loop; the body of the loop gets
executed at least once regardless of the initial value of the condition.

BREAK The BREAK directive breaks out of the innermost loop, and is equivalent to a
GOTO the directive following the loop’s ENDDO.

CONTINUE The CONTINUE directive begins the next iteration of the innermost loop, and is
equivalent to GOTO the loop’s ENDDO.

ENDDO The ENDDO is the termination or end point of a DO loop. It designates the
boundry point of the scope of the loop. When the loop terminates, execution
begins at the next directive following the ENDDQ.

Examples of common usage are:
DO WHILE (condition)

BREAK

ENDDO

DO UNTIL (condition)

CONTINUE

ENDDO

$Date: 2006/10/03 19:01:55 $

DUMPFILE 21

DUMPFILE

Sets the dump file basename.

ﬁ)UMPFILE filename

Sets gbl dumpname to filename. If filename is omitted, ‘LOADFILE’ is the used.

See gbl dumpname, gbl imgdumpdir, and section “Image Dumps” in The ITOS Com-
mand Subsystem.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

$Date: 2006/10/03 19:01:55 §$

ELSE 22

ELSE

The ELSE directive may only be used inside a compound IF directive, and is described
as part of the IF directive. See [IF], page 39.

$Date: 2006/10/03 19:01:55 §$

ELSEIF 23

ELSEIF

The ELSEIF directive may only be used inside a compound IF directive, and is described
as part of the IF directive. See [IF], page 39.

$Date: 2006/10/03 19:01:55 §$

ENABLE

24

ENABLE

The ENABLE directive enables the specified 1TOS subsystem.

Syntax

ENABLE subsystem [STATUS=variable]

subsystem

Identifies the subsystem. May be one of CMD, DSP, GPIB, or TLM.

STATUS=variable

Specifies a local or global variable or integer mnemonic to receive
the status from the directive. States are 1 == SUCCESS, 0 == no
change, -1 == ERROR.

Enable an 1TOS subsystem. Each of these directives enables a suite of STOL
directives and starts certain processes related to the indicated subsystem.

CMD - Enable the spacecraft command directives and start the fopmux,
fop, and cmd_transmit programs.

CMD, SIM - Enable the command subsystem with the command simulator.

TLM - Enable the telemetry directives and start the telemetry
controller(tmController) and the t1mClcw and t1mStatic programs.
DSP - Enable the display control directives, start the base pages and the
data pointer server(dp_server) and Java display server(IJServer) pro-
grams.

GPIB - Enable the GPIB/RS232 control directives and start the
deviceDriver program.

ENABLE QUERY [STATUS=variable]

STATUS=variable

Specifies a local or global variable or integer mnemonic to receive
the status from the directive. The value returned is an integer with
a bit weight as follows to identify if a subsystem is enabled:

‘8’ CMD is enabled.
‘4 DSP is enabled.

‘2 GPIB is enabled.
‘1’ TLM is enabled.

Print to the event log the list of subsystems and whether each is enabled or
disabled. If a STATUS variable is option is used, A integer value is returned as
in the example below:

global x
enable query status=x
if (BWAND(x, 1) .EQ. 0) enable tlm

$Date: 2006/10/03 19:01:55 §$

ENABLE 25

In the above example, if x is returned the value of 4, this indicates the DSP
system is enabled and everthing else is disabled. This would cause the IF to
evaluate true and the "enable tlm" directive would be issued.

If STATUS variable is not used then a status message for each subsystem will
print in the event log as below:

STOL_MSG: The cmd subsystem is DISABLED

STOL_MSG: The display subsystem is ENABLED

STOL_MSG: The GPIB subsystem is DISABLED

STOL_MSG: The telemetry subsystem is ENABLED

Discussion

A long, long time ago, before 1TOS was called 1T0S, we divided it into six subsystems:
command, telemetry, display, stol, database, and device control (gpib). All of the STOL
directives fall into one of these catagories.

Originally, the enable and disable directives controlled only the command subsystem,
since it is enabled only on one workstation in a cluster. More recently it became clear to
us that we needed to be able to disable and enable other subsystems, if for no other reason
than that we needed to reset them from time to time.

The strictly STOL directives — proceedure control, expression evaluation, and variable
assignment — cannot be disabled or enabled. The database-related directives, such as 1imit,
also cannot be disabled or enabled.

[We could go into considerably more detail on what happens when each subsystem is
enabled.]

See [DISABLE], page 18 for opposite directive.

$Date: 2006/10/03 19:01:55 $

ENDDO 26

ENDDO

The ENDDO directive may only be used to end a DO loop, and is described as part of the
DO directive. See [DO], page 20.

$Date: 2006/10/03 19:01:55 §$

ENDIF 27

ENDIF

The ENDIF directive may only be used to end a compound IF directive, and is described
as part of the IF directive. See [IF], page 39.

$Date: 2006/10/03 19:01:55 §$

ENDPROC 28

ENDPROC

The ENDPROC directive may only be used to end a proc, and is described as part of the
PROC directive. See [PROC], page 63.

$Date: 2006/10/03 19:01:55 §$

FREE 29

FREE

FREE name [, name ...]

name — a variable name.

The FREE directive directive is used to destroy local or global variables. In

GLOBAL one, two
LOCAL two, three, four
FREE one, two, three
the FREE directive destroys global variable (see [GLOBALJ, page 33) one and local vari-
ables (see [LOCALJ, page 45) two and three. After the FREE directive, global variable two
and local variable four remain.

(Global variable two remains because the FREE destroyed local variable two. Between
the LOCAL and FREE directives two different variables, local two and global two, existed
(however, only local two could be seen or referenced)).

$Date: 2006/10/03 19:01:55 §$

GET 30

GET

{GET device pid [= par] [variable]

device — A device is a string that matches a device name in the gbl_dev_type
array such as (BITSYNC, PSK, RECORDER, RECEIVER, etc.).

pid — Parameter identification. The name of the particular function being
queried.

=par — Optional parameter value for pid.

variable — Optional LOCAL variable, GLOBAL variable, or mnemonic to put re-
turned value with any appropriate conversion done. If no name is given the
returned value is written to gbl_ gpib_rcvmsg as an ASCII character string.

Examples:
GET BITSYNC ID

GET BITSYNC ID MY_MNEMONIC

GET TEKSCOPE CHANNEL=1

The GET directive is used to query values from various devices capable of being con-
trolled remotely over a GPIB or RS-232 interface. The definition of devices and their com-
mands are in the file Device.conf. This directive relies on the settings of global mnemonics
to determine which model of a particular device is being used and the communications
setup parameters required for the device. For example, the Device.conf configuration file
may define the commands for two different external devices, a bit synchronizer and an os-
cilliscope (eg. Loral DBS 430, and TEKTRONICS 2430). The global mnemonics for the
devices, found in ITOS_GPIB, specify which device is being used such as:

GBL_DEV_TYPE[O] BITSYNC
GBL_DEV_MODEL [0] = LORALDBS430
GBL_DEV_IF[0] = RS232
GBL_DEV_PORT[0] = /dev/ttya
GBL_DEV_BAUD[0] = 9600
GBL_DEV_CLEN[0O] = 8
GBL_DEV_SBIT[0] =1

GBL_DEV_TYPE[1] = TEKSCOPE
GBL_DEV_MODEL[1] TEK2430
GBL_DEV_IF[1] = GPIB
GBL_DEV_PORT[1] GPIB-ITOS
GBL_DEV_ADDR[1] 4
A default Device.conf file comes with ITOS. The user can modify this file or create their
own Device.conf and set the global gbl_devcfgdir to the directory where it is located. This

is an example of the entries that need to be added to the Device.conf file in order to use
the GET and SET directives.

$Date: 2006/10/03 19:01:55 $

GET 31

$PIDS # DO NOT ERASE THIS LINE

#

PID FIXED/VARIABLE Comment

1D, FIXED # ID of Device

CHANNEL1, FIXED # Info of Channel 1

CHANNEL, VARIABLE # Info on a Channel

BR, VARIABLE # Bit Rate

$END # DO NOT ERASE THIS LINE - ADD CMDS BEFORE THIS LINE

$MODEL=TEK2430

#

Digital Oscilloscope, Model Tektronix 2430A

#

PID:PAR Pair ASCII Cmd String, Comment

__

ID, "ID?" # Identify device
CHANNEL1, "CH1?" # Channel 1 information
CHANNEL, "CHY%9%7" # Channel 1 information
BR, "B%9v999\ .E9},. " # Bit rate

$END

For VARIABLE parameters such as bit rate(BR) shown above a COBOL-style PIC
format enclosed within %’s is used and is described below.

The PIC may contain the following characters:

’+?, ?’-> : The formatted number will begin with a
‘47 or -7,
’9? : Used to specify field width. Each ’9’ is

used to represent a digit.

> : Used for floating point numbers to specify
decimal point placement.

’E’,’e’ : Specifies the number to be formatted using
exponentiation using the letter ’E’.

’Z’,’z° : Whenever a ’Z’ appears before the digit
specifier, leading zeros will be suppressed.
By default, the field width is padded with

Zeros.

’V?,’v? : Used to show placement of assumed decimal
point.

7\’ : Precedes literal characters in the formatted

number string. At this time literals may
only be placed immediately preceding the

$Date: 2006/10/03 19:01:55 §$

GET 32

exponent character ’E’.

PIC Examples:

NUMBER PIC FORMATTED NUMBER
12345 +999999.9 +012345.0

12345 2999999.79 12345.

12345 9999 2345

12345.67 79 .999999E+999 1.234567E+004
12345 9.999EZ99 1.234E4

123.45 9.9999E99 1.2345E02

123.45 9.9E9 1.2E2

123456 9v999\ : E9 1234 :E5

Also see [SET], page 80, [ENABLE], page 24 and [DISABLE], page 18.

$Date: 2006/10/03 19:01:55 §$

GLOBAL 33

GLOBAL

[GLOBAL name [, name ...]

name — a variable name.

The GLOBAL directive creates global variables. There is no problem with (and no error
event messages are produced if) the same name is used in more than one GLOBAL directive,
for example:

GLOBAL summer, spring, winter, fall
GLOBAL winter

Note that if the same name is used in both LOCAL (see [LOCAL], page 45) and GLOBAL
directives, two different variables will be created but only the LOCAL variable will be visible.
However, trying to create a GLOBAL variable where a LOCAL variable already exists will cause
a STOL error to be generated and stop the running proc.

A GLOBAL variable defined more than once will be ignored and cause a STOL warning
message. A running proc will continue to run.

GLOBAL variables may also be destroyed using the FREE (see [FREE], page 29) directive.

$Date: 2006/10/03 19:01:55 §$

GO 34

GO

G J

The GO directive restarts a waiting proc. The GO directive should only be entered inter-
actively since it makes no sense to have a GO directive in a proc file.

See [WAIT], page 105.

$Date: 2006/10/03 19:01:55 $

GOTO 35

GOTO

GOTO linenumber
- or -
GOTO label

linenumber - (an integer constant or expression) is the line number to goto.
label — (a string constant or expression) is the label to goto.

The GOTO directive jumps to the specified line or label (directive labels) in the current
proc.

GOTO must not be used to jump in or out of IFnode if or DO blocks; it this happens,
mysterious error messages will result!

$Date: 2006/10/03 19:01:55 §$

GPIB

GPIB

36

-

o

GPIB POLL host, address

GPIB SEND host, address, message

GPIB RECEIVE host, address, msglen [, variable]

/

GPIB POLL

GPIB SEND

host — string expression containing the host name or IP address of the GPIB-
Ethernet interface box. If the string contains any special characters is must be
quoted.

address — integer expression from 0 thru 0x7E30. The primary address must be
an integer from hex 00 thru hex 1E (0 to 30 decimal). If secondary addressing
is used, the primary address appears in the low order byte and the secondary
address appears in the high order byte. The secondary address must be an
integer from hex 60 to hex 7E (96 to 126 decimal). For example, the address
0x6105 indicates a device whose primary address is 5 and whose secondary
address is 0x61. NOTE: Some devices assume a secondary address offset of hex
60, so a displayed secondary address of 1 is really hex 61.

message — string expression or constant.

msglen — integer expression specifying the maximum length of the message to
be received.

variable — Optional LOCAL variable, GLOBAL variable, or mnemonic to put
RECEIVE value.

The GPIB device is sent a serial poll for status. The status value returned by
the device is a one byte integer that is put in global mnemonic gbl gpibserpoll
if it exists otherwise an event message will display the status value.

The GPIB device is sent the command in message. If a command generates a
response then you must issue a GPIB RECEIVE to retrieve it.

GPIB RECEIVE

The value received from the device is written to the optionally specified STOL
variable or mnemonic with any appropriate conversion done. If none is specified
then the returned value is written to global mnemonic gbl gpib_rcvmsg as an
ASCII character string.

Examples:
GPIB POLL gpib3, 7

STOL_MSG: sending message to device...
STOL_MSG: Received GPIB serial poll status byte of: 0

GPIB SEND "gpib-itos", 4, "ID?"
STOL_MSG: sending ID? comand to device at address J through host gpib-itos

$Date: 2006/10/03 19:01:55 $

GPIB 37

GPIB RECEIVE "gpib-itos", 4, 100
STOL_MSG Received GPIB msg and set GBL_GPIB_RCVMSG to: TTTTTTXXLLLTTLLLLE

GPIB RECEIVE "gpib-itos", 4, 12, gbl_char
STOL_MSG: Received GPIB msg and set GBL_CHAR to: ID TEK/2430A

$Date: 2006/10/03 19:01:55 §$

HOTKEY 38

HOTKEY

HOTKEY

HOTKEY > destination

HOTKEY >> destination

destination — A relative or absolute file name. Names the file the report gets
written to (> means to overwrite that file, >> means to append to that file). If
no destination is specified, the report gets written to the event log.

The HOTKEY directive generates a report showing current stol status. This directive is
called HOTKEY because it is intended to be invoked via a hotkey.

$Date: 2006/10/03 19:01:55 §$

IF 39

IF

p
IF (condition) directive

IF (condition) THEN
ELSEIF (condition) THEN
ELSE

ENDIF
\

condition — an integer expression.

directive — any directive other than DO, ELSE, ELSEIF, ENDIF, ENDPRQOC, IF, or
PROC.

This directive may only be used in procs.
The ELSEIF and ELSE clauses are optional. Multiple ELSEIF clauses are allowed.
The IF directive allows conditional execution of other directives.

IF (condition) directive
The one-line IF executes <directive> only if <condition> .NE. 0. The one-line
IF may be used interactively as well as inside procs.

IF (condition) THEN
Begins a compound IF. The compound IF executes at most one of its clauses —
the first whose condition .NE. 0 or, if all conditions .EQ. 0, the ELSE clause.

ELSEIF (condition) THEN
Begins an ELSEIF clause in a compound IF. ELSEIF clauses are optional;
multiple ELSEIF clauses may be specified.

ELSE Begins the ELSE clause in a compound IF. The ELSE clause is optional.
ENDIF Terminates a compound IF.

IF statements can be nested up to 40 levels deep for example:
IF (x > 10) THEN
IF (x > 9) THEN
IF (x > 8) THEN

ENDIF
ENDIF
ENDIF

$Date: 2006/10/03 19:01:55 $

KILLPROC 40

KILLPROC

KILLPROC

KILLPROC BACKGROUND pid

KILLPROC may be abbreviated KP.
BACKGROUND may be abbreviated BG.

pid — expression representing the process number of a running background proc.
gbl_system_pid can be used to for the last background proc started.
The KILLPROC directive with no arguments terminates all foreground procs.
The KILLPROC BACKGROUND directive terminates a particular background proc.
Use the RETURN (see [RETURN], page 76) directive to terminate the current proc only.
For example, the following proc fragment
GLOBAL pid

start test &

==>STOL_MSG: Background PROC "test" (ID# 123}) started.
pid = gbl_system_pid

==>STOL_MSG: Opened test in /home/itos/procs/test.proc

kp bg pid
==>STOL_MSG: Killing Background Task " [proc]test" (ID# 1234)
==>STOL_MSG: Background Task " [proc[test" (ID# 1234) exited.

See [START, page 90 for how to start a proc.

$Date: 2006/10/03 19:01:55 §$

LET 41

LET

LET name = value
~ or -
name = value

name — a variable or mnemonic name.
value — a constant or expression representing the value to be assigned to name.

The LET directive assigns a value to a local variable, global variable, or telemetry
mnemonic.

An event message is generated that shows the value that was assigned. This is partic-
ularly useful if value is an expression or had to undergo a conversion before it could be
assigned.

$Date: 2006/10/03 19:01:55 §$

LIMITS 42

LIMITS

-
LIMITS ON list-of-mnemonics

LIMITS OFF list-of-mnemonics
LIMITS QUERY list-of-mnemonics

LIMITS DELETE list-of-mnemonics

LIMITS CHANGE mnemonic rlil, yli, yhil, rhi, rl2, yl2, yh2, rh2

N
list-of-mnemonics — comma-seperated list of telemetry mnemonic names or the
keyword ALL. list-of-mnemonics is optional for LIMITS ON and LIMITS OFF
(ALL is assumed); ALL is not allowed for LIMITS QUERY.
mnemonic — a telemetry mnemonic name.
rll ... rh2 — floating point constant or expression or the keyword NOCHG (or
nothing at all) representing the new red low 1, yellow low 1, ..., red high 2 limit
values. A NAN or INF turns off limit checking for a particular red or yellow limit.
LIMITS may be abbreviated LIMIT or LIM.

CHANGE may be abbreviated CHG.
DELETE may be abbreviated DEL.
LIMITS ON
LIMITS OFF

Turns limit checking on or off for the specified mnemonics. If no mnemonics
are specified, turns limit checking on or off for all mnemonics.

LIMITS QUERY
Reports the current limit settings for the specified mnemonics. The report is
displayed in the event log as STOL_MSG events and has the form:
mnemonic: on_off rll, yli, yhl, rhil
- or -
mnemonic: on_off rll, yli, yhl, rhil, rl2, yl2, yh2, rh2

LIMITS DELETE
Removes the limits settings for the specified mnemonics from the limits table.
If the limit is shared it only removes the reference to those mnemonics not the
limit entry.

LIMITS CHANGE
Change/create the specified limit values for the specified mnemonic. If limits
don’t currently exist they will be created. For example:

LIMITS CHANGE ACT2SC! nan,,4.2

$Date: 2006/10/03 19:01:55 $

LIMITS 43

changes ACT2SC1’s red low 1 value off and yellow high 1 limit to 4.2. Warning:
Changing limits for a mnemonic that is shared by other mnemonics effectively
changes it for all mnemonics sharing that limit set.

$Date: 2006/10/03 19:01:55 §$

LOAD 44

LOAD

LOAD filename

LOADPKT filename

filename — A string constant or parenthesized expression evaluating to a string
naming a load file.

These directives may optionally have a preceding slash, as in /LOAD initfilel.

These directives are only allowed when commanding is enabled (see [ENABLE],
page 24).

The LOAD directive is used to uplink a raw image to the spacecraft. filename names a
raw image load file: first a formatted image load file is generated; then the formatted image
load file is uplinked. The formatted image load file’s name is filename with the extension
changed to ‘.PKT’. For example, if filename is ‘test3.ats’ the generated file will be named
‘test3.PKT’. Generated files get placed in the same directory as the original file.

The LOADPKT directive is used to uplink a formatted image to the spacecraft. filename
names the formatted image load file to be uplinked.

If in ONESTEP command mode (see [MODE], page 48), the Transfer Frames are imme-
diately uplinked to the spacecraft. If in TWOSTEP command mode, the Transfer Frames
are stored in the command buffer pending transmission until the SEND directive is issued
(see [SEND], page 78).

filename is the name of the image load file. If filename contains a / it is the pathname
to the file; otherwise filename names the file in the default load file directory (global
mnemonic ghl_imgloaddir).

For the formats of load files, see section “Image Loads” in The ITOS Command Subsys-
tem.

When global mnemonic gbl_loaddone equals 1, the load has been transmitted and re-
ceived by the spacecraft.

Global mnemonic gbl loadfile contains the name of the most recently load image file.
Use the STOP directive (see [STOP], page 92) to abort a load in progress.

$Date: 2006/10/03 19:01:55 §$

LOCAL 45

LOCAL

[LOCAL name [, name ...]

name — a variable name

The LOCAL directive creates local variables, and is intended to be used in proc files
(it rarely makes sense to issue a LOCAL directive interactively). It is possible for a local
variable to have the same name as a global variable or telemetry mnemonic, in which case
the global variable or telemetry mnemonic is hidden until the local variable is destroyed.
Local variables are automatically destroyed when their proc file returns or is killed; local
variables may also be destroyed using the FREE directive.

A LOCAL variable defined more than once will cause an error to be displayed by STOL
and the running proc will stop pending operator interaction.

See [GLOBAL], page 33. See [FREE], page 29.

$Date: 2006/10/03 19:01:55 §$

LOG 46

LOG

e ~
LOG > file [PUSH]

LOG >> file [PUSH]
LOG POP
LOG QUERY

LOG STOP - depricated
\ J

file — log file name. Typically a quoted string (quoted because it normally
contains special characters); can also be a parenthesized expression.

> file — create or overwrite the log file.
>> file — create or append to the log file.

PUSH — optional parameter specifies that the current log file is pushed onto stack
before new log file is open. This then can be reversed by a LOG POP directive.
Without this option the new log file replaces the current open log on the top of
the stack.

The LOG directive controls event message logging.

Logging is turned on automatically whenever ITOS starts using ‘startup_log’ file in the
gbl_evtldir directory. The problem is that the log file is hard coded to get replaced each
time ITOS starts. Obviously, if the file gets replaced, the previous contents are lost. But if
the file gets appended to the file can become so large that it becomes extremely difficult to
search! The solution is to use a different log file each time ITOS starts a startup proc using
a unique log file name. One way to do this is:

LOG >> (CONCAT("LOG.",SUBSTR(PQGBL_GMTOFF,1,6)))

This logs to a file named "LOG.93-344" (assuming the TCW thinks today is Dec 10
1993). This file gets created if it didn’t already exist and gets appended to if it did previously
exist. The current log file is is closed before the new one is opened.

A word of warning: log files take up lots of disk space, and the disk can become full
unless log files are carefully managed.

LOG STOP - is depricated. This directive will act like a LOG POP closing the current
log and reopening the previous. You can stop logging by directing the log to ‘/dev/null’
which in effect throws data away. This would be done by

LOG > "/dev/null"
but this is not recommended.

LOG POP - reverses a previous LOG file PUSH directive by closing the current log file
and reopening the previous log file for append. You can not pop off the lowest (or first) log
file since a log file must always be open.

$Date: 2006/10/03 19:01:55 $

LOG 47

LOG QUERY - reports the current log file being written as well as any pushed on the
stack.

See section “Logging events” in Event Processing

$Date: 2006/10/03 19:01:55 §$

MODE 48

MODE

4 N
MODE STEP1

- or -

MODE STEP2

MODE BYPASS ON
- or -
MODE BYPASS OFF

MODE REXMIT ON
- or -
MODE REXMIT OFF

MODE VERIFICATION ON
- or -
MODE VERIFICATION OFF

MODE VTIME timeout
- J

This directive may optionally have a preceding slash, as in /MODE REXMIT ON.
This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The MODE directive controls various command parameters.

MODE STEP Selects onestep or twostep commanding.

MODE BYPASS
MODE BYPASS ON is equivalent to BYPASS ON, and MODE BYPASS OFF is equivalent
to BYPASS OFF. See [BYPASS], page 11.

MODE REXMIT
MODE REXMIT ON is equivalent to RETRLIM 3, and MODE REXMIT OFF is equivalent
to RETRLIM 0. See [RETRLIM], page 74.

MODE VERIFICATION
MODE VERIFICATION ON is equivalent to BLIND OFF; MODE VERIFICATION OFF is
equivalent to BLIND ON. See [BLIND], page 10.

MODE VTIME
MODE VTIME timeout is equivalent to TIMEOUT timeout. See [TIMEOUT],
page 101.

$Date: 2006/10/03 19:01:55 §$

OPEN 49

OPEN

p
OPEN (unit) thing [opts ...]

OPEN (unit) QUERY [opts]

OPEN QUERY
N\

unit — a number (an integer constant or an expression that evaluates to an inte-

ger) that identifes thing to subsequent READ, WRITE, or CLOSE directives.

thing — a string (or expression that evaluates to a string) that identifes the file,
port, or socket to be opened. See the discussion below.

opts — a space seperated list of options. See the discussion below.

The OPEN directive opens a file, serial port, or socket for use by the READ and WRITE
directives or requests status of one or all open units.

Opening Files
If thing identifies a FIFO or file, then opts can be:

READ
WRITE
RDWRITE Defaults to RDWRITE.

fileoptions = CREATE
fileoptions = APPEND
Defaults to APPEND.

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive the status
from the open operation.

States are 1 == SUCCESS, -1 == ERROR.

Using this option will cause a proc to continue regardless of error except a panic
message.

It is up to the user to test the return variable before attempting to READ or
WRITE.

Opening Serial Ports

If thing identifies a serial device, then opts can be:

BAUD = baudrate
baudrate must be a rate supported by the host hardware and operating system.
Rates of 300, 1200, 2400, 4800, 9600, 19200, and 38400 are supported on nearly
all systems. Defaults to 9600.

$Date: 2006/10/03 19:01:55 $

OPEN 50

CS7
CS8 Sets 7 or 8 bit characters. 7 bit characters have two stop bits; 8 bit characters
have 1 stop bit. Defaults to 7 bit characters.

PARITY = parity
EVEN, 0DD, or NONE. Defaults to EVEN.

STATUS=variable
same as Opening Files.

For example, to open the SO serial port on Linux at 38400 baud with 8 bit character
length, 1 stop bit, and no parity:
OPEN (1) "/dev/ttySO" BAUD=38400 CS8 PARITY=NONE

Opening sockets

If thing contains a colon, it has the form “host:port” (or simply “:port”) and indicates
a socket, then opts can be:

TCP
UDP Type of socket connection. Defaults to TCP.

SERVER Only valid for sockets. The unit is opened as a socket server. If not specified,
the socket is opened as a CLIENT. SERVER doesn’t make sense with UDP.

AUTORCN Only valid for server sockets. The unit is opened for AUTO RECONNECT, that is if
the connection is broken it will return to listen mode and accept a connection
from a new CLIENT.

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive the status
from the open operation. A local variable is NOT allowed with the SERVER
option since a proc could exit before the connect is complete making the status
variable invalid.

States are 1 == SUCCESS, 0 == NO CONNECT, -1 == ERROR.

This option will cause a proc to continue on any status value except ERROR
with a panic message.

It is up to the user to test the return variable before attempting to READ or
WRITE. Only a status of SUCCESS actually has an open socket connection.

TIMEQUT=seconds
Sets the maximum number of seconds a STOL proc will wait for a socket con-
nection to be made or accepted. If this option is not specified, a default timeout
of 30.0 seconds is assumed.

A proc is suspended until a connection is made, an error is detected or TIMEQUT
is exceeded. An interactive GO directive causes the OPEN to immediately time
out. A timeout will close the unit and the proc will halt unless the STATUS
option is specified. A 0.0 TIMEOUT waits indefinitely.

TIMEQUT is ignored with UDP or STATUS options or on an interactive OPEN.

$Date: 2006/10/03 19:01:55 $

OPEN 51

Open Unit Query

OPEN UNIT QUERY reports status of one unit. The opt can be:

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive the status
from the open operation. States are 1 == OPEN, 0 == NOT CONNECTED,
-1 == NOT OPEN.

A STATUS of ‘1’ indicates the unit is open. A STATUS of ‘0’ indicates the
unit is open but that a socket connection is not complete to the other end. A
STATUS of ‘-1’ indicates no such unit number is currently open.

Open Query

OPEN QUERY reports which things are currently open.

See Also

See [CLOSE], page 14 for how to close an opened unit.
See [READ], page 69 for how to read from an open unit.
See [WRITE], page 107 for how to write to an open unit.

$Date: 2006/10/03 19:01:55 $

PAGE 52

PAGE

The PAGE directive controls the telemetry display pages.

Syntax

PAGE namel, slot] [, ratel
Bring up a new page; bring a running page to the top, change its refresh rate,
or move it to a new slot.

name String constant or expression naming a page.

slot Integer constant or expression giving a location on the screen where
the page should be displayed.

rate Floating point constant or expression giving the number of seconds
between page data updates.

PAGE CLEAR name
PAGE CLEAR ALL
Remove a page from the display, or remove all but base pages from the display.

PAGE FREEZE name
Stop a page from updating.
PAGE THAW name
Undo a freeze; allow a page to start updating again.

PAGE REFRESH namel, rate]
Change a page’s update rate, or cause it to update immediately

Discussion

The page directive controls telemetry mnemonic and other page displays. Telemetry
mnemonic pages are defined in disk files according to the rules set out in the ITOS Page &
Seqprt Definition Guide. Telemetry pages can also be created with the makepage utility.

The page directive also controls the following set of special pages:

‘sentq’ Command sent queue display. This page displays the FOP sent queue, giving
verification status for the last 128 commands sent.

‘cmdbuf’ Command buffer display. This page displays the command buffer, used in two-
step commanding and for sending spacecraft loads.

‘control’ Display control page. This page lists all active pages, snaps, packet & frame
dumps, sequential prints, plots, and configuration monitors.

‘pktcount’
Telemetry packet counter page. This page shows how many of each packet
in the database has been processed by the current instance of the unpacker
program, tlmClient.

$Date: 2006/10/03 19:01:55 $

PAGE 53

‘limitview’
Display section “dsp_limitview” in Limit Viewer page. This page lists all of the
mnemonics with current limit violations.

Use the first form above to start a page. The name argument can be:
1. The complete path of a page file, including its extension, enclosed in quotes.

2. The name of the page, not including the ".page" or ".disp" extension. The system will
search the directories given by gbl_pagepath for the page definition file.

3. One of the special pages mentioned above. The system looks for a special page exe-
cutable called ‘dsp_"name in the directory given by gbl_dspbin.

The slot argument directs where the page should be displayed. The screen may be
thought of as containing four quadrants: Slot 1 is in the lower left, just below the main
event window, slot 2 is in the lower right, also just below the event window, slot 3 is in the
upper left, just below the STOL input window and above slot 1, and slot 4 is in the upper
right, above slot 2.

When running under the olvwm window manager, you also can bring pages up on different
virtual screens. In this case, the slot argument may be given as a two-digit number, where
the first digit is the virtual screen and the second is the slot number on that screen. Screen
1 is the virtual screen currently displayed. Subsequent screen numbers are virtual screens
to the right of the current virtual screen. So, for example slot ‘31’ is interpreted as slot 1
on the virtual screen two to the right of the current screen. Single-digit slot numbers are
on virtual screen 1.

The rate argument gives the time in seconds between data updates on the page. Pages
are updated on a timed interval, which defaults to once every four seconds.

The rate argument has no effect on graphic pages (those with a .disp extension). The
update rate of some page elements is specified when they are created. Others receive updates
whenever a mnemonic is received.

Only a single instance of any given page may be displayed. If the named page already
is running and the page directive is executed with no slot argument, the given page will be
brought to the top of the window stacking order at its present location. If you give a rate
(‘page’ name’, ,’rate), the page also will begin updating at the new rate. If a slot is given,
the page will be moved to the new slot.

Use the page clear directive, the second form above, to remove pages from the display.
If you give the keyword ALL rather than an individual page name, all pages are cleared
except base pages. Base pages are those named by the mnemonics gbl_basepg_1, gbl_
basepg_2, and gbl_statuspg, which typically are loaded from an ‘itosrc’ file. Base pages
may be closed with the mouse.

Use the page freeze directive to halt page updates, and use the page thaw directive to
resume page updates. While a page is frozen, use the page refresh directive without a
rate argument to do a one-time page update. Use the page refresh directive with a rate
argument to change a running page’s update rate. You also can do this with the first form
of the directive, as previously mentioned.

$Date: 2006/10/03 19:01:55 §$

PKTDUMP 54

PKTDUMP

The PKTDUMP directive allows users to display the contents of source packets as they
arrive from the spacecraft or other data source.

PKTDUMP [station] [option] [filter] [[> dest]...]
Start a packet dump.

station identifies the telemetry source.

option ID = id
COUNT = count
BINARY

filter [ADD | DROP] [NOT] [vcspec ...|
vespec — ALL | vcid [ADD | DROP] [NOT] [appid [, appid ...]
veid — VCO | VC1 | ... | VC7
appid — ALL | integer (expression) application ID.

dest is a dump destination: filename, printer (ptr[:name)), or display (DSP
or CRT).

PKTDUMP OFF option
Stops a packet dump.
option | ALL
| ID = id

PKTDUMP QUERY
Reports on currently active packet dumps.

The pktdump directive starts a packet dump, which displays, prints, or captures in a file
a set of raw telemetry packets given by filter. The packets are formatted into ASCII in a
way that’s reasonably easy to read, with all headers are broken out into individual fields,
unless you specify the binary option.

Use the binary option may be used to capture packets in their original binary represen-
tation in a file. If given, only file output is honored; that is, output will not be routed to
the display or printer.

Specify the station argument to select the data source providing the data you wish
to dump, when more than one source is in use. Valid station names are in the Source
Configuration File, and spacecraft data is the default source. When the data source is from
an archive playback specify "playback" as the source.

Use the id option to name the packet dump. You give the same id to the pktdump off
directive to stop that particular dump. If you don’t specify an id, the system will provide
one for you, which it reports in the event log.

The count option allows you to limit the number of packets you collect to count. After
the given number is collected, the packet dump program exits, unless you are dumping to a
display window. In that case, the program displays a ‘Finished’ status and waits util you
dismiss it.

$Date: 2006/10/03 19:01:55 $

PKTDUMP 55

The filter argument is as explained for the acquire directive, except that only one virtual
channel may be specified. If no filter is given, all packets on virtual channel gbl tm_defvc
will be dumped.

Up to three optional dump destinations, dest, are permitted, with one each specifying
output to a file, the display, or a printer. A file name may be an absolute pathname or simple
file. In the latter case, the directory given by gbl pkdpdir is prepended to the filename.
A printer may be specified by giving a dest of the form ptr[:printer], where the optional
printer is a specific printer name. The default destination is the display, which may be
specified explicitly by giving dsp or crt as dest.

$Date: 2006/10/03 19:01:55 §$

PKTTIMEOUT 56

PKTTIMEOUT

| <interval> | ALL
PKTTIMEQUT | |
| QUERY | <pktids> [,<pktids>,...]

interval — is the time in seconds at which the packet static should be checked.
pktids — comma seperated list of packet numbers.

PKTTIMEOUT QUERY ALL
Reports the current timeout interval for all telemetry packets.

PKTTIMEOUT QUERY pktids
Reports the current timeout interval for the specified telemetry packets.

The PKTTIMEOUT directive modifies or retrieves the timeout interval for the specified
telemetry packets pktids. A packet is flagged as static when it has not been received from
telemetry stream within the timeout period.

PKTTIMEOUT ALL 10
= All 109 tlm packets timeout interval set to 10 seconds.
PKTTIMEOUT 15 3,5,10
= Packet id 3 timeout interval set to 15 seconds,
Packet id 5 timeout interval set to 15 seconds,
Packet id 10 timeout interval set to 15 seconds.
PKTTIEMOUT QUERY 3,6,10
= Pktid 3 timeout interval set to 15 seconds,
Pktid 6 timeout interval set to 10 seconds,
Pktid 10 timeout interval set to 15 seconds.

$Date: 2006/10/03 19:01:55 §$

PLAYBACK 57

PLAYBACK

The PLAYBACK directive replays previously archived telemetry.

Syntax

PLAYBACK [options ...] [filter]

PLAYBACK QUERY
Query what playback is currently running. This option will override all others.

PLAYBACK PAUSE
Pause the playback that is currently running.

PLAYBACK RESUME
Resume a playback that is currently paused. If rate is currently zero it will be
set to a maximum before the playback is resumed.

PLAYBACK STOP
Stop the current playback.

option — SC

option — GMT
Indicates wheter the start and stop times are spacecraft (SC) or wallclock (GMT)
times. GMT is the default.

option — BEGIN = start_date
option — END = stop_date
Start and stop dates.

option — RATE = rate
Playback rate in kilobits per second.

option — FILE = filename
Name of archive file to playback.

option — ID = id

filter — [ADD|DROP] ALL

filter — [ADD|DROP] [NOT] [vcspec ...]

vespec —r ve

vespec — ve = [ADD|DROP ,] ALL

vespec — ve = [ADD|DROP ,] [NOT ,] appid [, appid ...]
Specifies which packets or transfer frames to play back.

Discussion

By default playback will look in the directory specified by GBL_TM_ARCHDIR. If you
need playback to look in a different directory just explicitly enter the path to the filename.
You may also set GBL_TM_ARCHPATH to a list of directories to search for an archive to
playback. For a more intricate playback scenario start the archive replay GUI located in

$Date: 2006/10/03 19:01:55 $

PLAYBACK 58

the Progs section of the STOL window. When playback is started the global mnemonic
GBL_PLAYBACK _ACTIVE is set to 1. When there is no playback running this global is
set to 0.
An example of a simple playback:
playback file = "99215101112" rate = 23 vcO
An example of playback over a time range:
playback sc begin = "99-215-10:00:00" end = "99-216-10:00:00" rate = 23 vcO
An example of a playback started paused as in the example:

playback file = "99215101112" rate = 0 vcO vcb
pktdump vcb

playback rate = 23

playback resume

This will allow the user to start an application such as PKTDUMP after the playback
is started without missing any data. Enter PLAYBACK RESUME to start the data flow.
If the rate is not set it will be reset to maximum before resuming the playback.

See Also
ARCHIVE.

$Date: 2006/10/03 19:01:55 §$

PREVIEW 99

PREVIEW

The PREVIEW directive controls STOL preview mode for handling input of directives from
STOL interactive input.

Syntax

PREVIEW ON
enables a two step directive mode.

PREVIEW OFF
disables a two step directive mode.

PREVIEW QUERY
displays the current state of two step directive mode

Discussion

With PREVIEW mode OFF, the operator is in a normal single step mode where a
STOL PREV is optional by pressing the Prev button in the STOL window. Pressing
enter at any time will cause the directive to be executed. ASK boxes and Critical Alarm
Popups also have a Preview button. In this mode the button is optional, the OK or SEND
button are the default operation respectively.

With PREVIEW mode ON, the operator is required to perform a 2 step process of entering
a directive in the STOL input box which will producre a STOL_PREV event message and
then press the Exec button in the STOL window to cause the directive to be executed.
One exception to this rule is a table of directives that don’t require a STOL_PREV event
message. This table is a global string mnemonic array called GBL_STOLPREV_EXEMPT
which can contain up to 100 directive strings. If the directive entered in STOL is in this
table then the preview is circumvented and immediately executed. Note: This mnemonic
is only read once at startup by STOL so it must be initialized in the ‘itosrc’ file prior to
starting ITOS. An example for the ‘itosrc’ fragment might be something like the following:

setenv ITOS_STOLPREV_EXEMPT_O_ "ac query"
setenv ITOS_STOLPREV_EXEMPT_1_ '"acquire query"
setenv ITOS_STOLPREV_EXEMPT_2_ "ar query"
setenv ITOS_STOLPREV_EXEMPT_3_ '"archive query"
setenv ITOS_STOLPREV_EXEMPT_4_ "cfgmon"

setenv ITOS_STOLPREV_EXEMPT_5_ '"date"

setenv ITOS_STOLPREV_EXEMPT_6_ "dumpfile"
setenv ITOS_STOLPREV_EXEMPT_7_ '"enable query"
setenv ITOS_STOLPREV_EXEMPT_8_ '"global"

setenv ITOS_STOLPREV_EXEMPT_9_ '"get"

setenv ITOS_STOLPREV_EXEMPT_10_ "gpib"

setenv ITOS_STOLPREV_EXEMPT_11_ "hotkey"

setenv ITOS_STOLPREV_EXEMPT_12_ "let"

setenv ITOS_STOLPREV_EXEMPT_13_ "limits"

setenv ITOS_STOLPREV_EXEMPT_14_ "log"

$Date: 2006/10/03 19:01:55 $

PREVIEW

setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv

ITOS_STOLPREV_EXEMPT_15_
ITOS_STOLPREV_EXEMPT_16_
ITOS_STOLPREV_EXEMPT_17_
ITOS_STOLPREV_EXEMPT_18_
ITOS_STOLPREV_EXEMPT_19_
ITOS_STOLPREV_EXEMPT_20_
ITOS_STOLPREV_EXEMPT_21_
ITOS_STOLPREV_EXEMPT_22_
ITOS_STOLPREV_EXEMPT_23_
ITOS_STOLPREV_EXEMPT_24_
ITOS_STOLPREV_EXEMPT_25_
ITOS_STOLPREV_EXEMPT_26_
ITOS_STOLPREV_EXEMPT_27_
ITOS_STOLPREV_EXEMPT_28_
ITOS_STOLPREV_EXEMPT_29_
ITOS_STOLPREV_EXEMPT_30_
ITOS_STOLPREV_EXEMPT_31_
ITOS_STOLPREV_EXEMPT_32_
ITOS_STOLPREV_EXEMPT_33_
ITOS_STOLPREV_EXEMPT_34_
ITOS_STOLPREV_EXEMPT_35_
ITOS_STOLPREV_EXEMPT_36_

llpagell
"pktdump"
"pkttimeout"
"playback"
llplotll
"preview query
"preview on"
"Purge"
"quit"

||rem||

" Seqpr-tll

" Set n

" Sholl
"shoval"
"snap"

" Speedll
"start query"
"stripchart"
"system"
lltfdumpll
"timeout"
llzeroll

60

Also in the 2 step mode the ASK boxes have the PREVIEW button as manditory and
become the default button. The 0K or SEND buttons become deactivated until the PREVIEW
button is pressed. Once the the preview message goes into the event log the 0K or SEND
buttons become operational and will function as normal.

$Date: 2006/10/03 19:01:55 §$

PLOT 61

PLOT

The PLOT directive controls plotting of live data and data stored in files.

Syntax

PLOT plotname [, rate]l [< datal [>[>] output ...]
Starts a plot of live data or data from a file.

plotname is the name of the plot to start.

rate is the update rate.
data is the name of the data input file.
output is the name of a graphical or data output file.

PLOT CLEAR plotname | ALL
Clears a plot from the display; kills a plot.

Discussion

The plot directive controls the 1TOS plotting capabilities. In its first form above, it starts
a plot operation according to the instructions in the plot definition file plotname.plot.
The system looks for plot definition files in directories listed in the page path given in
(GBL_PAGEPATH).

If a data file name is given, data is read from that file and plotted; otherwise, data is
read from the telemetry stream in real time. For real-time plots, the plot definition must
reference only valid telemety mnemonic names in its x and y value expressions. When
plotting file data, the symbols used in the value expressions should correspond to column
headings in the data file. See See section “value stmnt” in ITOS Plotting Users’ Guide, for
more information.

Up to two optional ouptut file names are permitted, one specifying a graphical output
file and the other specifying a data output file. The suffix of the filename determines which
type of file is being given: Data output filenames must end in ‘.dat’. Graphical output
filenames may end it either ‘.xwd’ or ‘.gif’ In the former case, an X window dump file is
produced; in the latter case a Graphics Interchange Format (GIF) image file is produced.
Graphical output also may be directed to the printer by giving an output file name of the
form ptr[: printer], where the optional printer is a specific printer name.

Currently, the data file output is not supported. When it is supported, it obviously will
be useful only for real-time data.

If a graphical output file is specified for a plot of file data, the plot program will exit
automatically after producing the output file. If you’re plotting live data, the program will
use the given output file name as the default name for snaps you command with the mouse.

$Date: 2006/10/03 19:01:55 $

PLOT 62

At some future time, we plan to add the ability to periodically auto-snap real-time plots,
but this is not yet available.

The rate option allows you to do real-time plots on a timed interval. Normally, real-time
plots are updated whenever a new value comes in to the system. If the rate option is given,
however, the plot will update all charts using currently available values every rate seconds.

Use the plot clear form of the directive to clear a plot from the display and kill the
plot program. Specify all instead of a plot name to clear all plots.

$Date: 2006/10/03 19:01:55 §$

PROC 63

PROC

PROC name [(parmlist)]

ENDPROC

name — the name of the proc.

parmlist — comma-seperated list of names. Each name in parmlist becomes a
local variable whose initial value is the value of the corresponding argument in
the START directive (see [START], page 90).

The PROC directive is only permitted as the first directive in a proc file (see section
“Proc Files” in ITOS STOL); any other usage results in a syntax error. The PROC directive
identifies the arguments to the procedure.

See [RETURN], page 76, for how to terminate a proc file. See [START], page 90, for
how to invoke a proc file.

$Date: 2006/10/03 19:01:55 $

PURGE 64

PURGE

o

This directive may optionally have a preceding slash, as in /PURGE.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The PURGE directive removes all commands from the Sent-Queue which are pending
acknowledgement from the spacecraft

$Date: 2006/10/03 19:01:55 §$

QUIT

QUIT

QUIT
The QUIT directive terminates olstol.

$Date: 2006/10/03 19:01:55 §$

65

RAW 66

RAW

RAW hex

hex — hexadecimal numbers. Each number consists of two hexadecimal digits
and represents one octet of the command. Pairs of hexadecimal digits may be
seperated by spaces or commas. The following are some of the ways to specify
the eight-octet source packet 0x0001020304050607:
RAW 00 01 02 03 04 05 06 07
- or -
RAW 0001020304050607
- or -
RAW 00010203, 04050607
- or -
RAW "000102", (1+2), 040506, (263)

This directive may optionally have a preceding slash, as in /RAW

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RAW directive sends a spacecraft command specified in raw hexadecimal at the source
CCSDS Telecommand packet level. See section “Spacecraft Commands” in The ITOS
Command Subsystem.

$Date: 2006/10/03 19:01:55 $

RAWTF 67

RAWTF

RAWTF hex
hex — hexadecimal numbers.
This directive may optionally have a preceding slash, as in /RAWTF

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RAWTF directive sends a spacecraft command specified in raw hexadecimal at the
CCSDS transfer frame level. See section “Spacecraft Commands” in The ITOS Command
Subsystem.

The RAWTF directive assumes a CCSDS Telecommand Packet within a CCSDS Telecom-
mand Transfer Frame. If gbl chksumrout is set, a checksum is appended to the packet
within the transfer frame. To disable appending the checksum, set GBL_CHKSUMROUT="".

The Telecommand Transfer Frame header’s frame length field determines to size of the
RAWTF. Excess octets in the RAWTF directive are ignored; if there are too few octets in the
RAWTF directive, the missing values in the resulting transfer frame are unpredictable.

$Date: 2006/10/03 19:01:55 §$

RRAW 68

RRAW

RRAW hex

hex — hexadecimal numbers. Each number consists of two hexadecimal digits
and represents one octet of the command. Pairs of hexadecimal digits may be
seperated by spaces or commas. The following are some of the ways to specify
the eight-octet source packet 0x0001020304050607:

RRAW 00 01 02 03 04 05 06 07

- or -
RRAW 0001020304050607
- or -
RRAW 00010203, 04050607
- or -

RRAW "000102", (1+2), 040506, (263)
This directive may optionally have a preceding slash, as in /RRAW

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RRAW (a.k.a. Really Raw) directive sends a spacecraft command specified in raw
hexadecimal at the source packet level. This directive is the same as the RAW directive but
without the CCSDS Telecommand headers. See section “Spacecraft Commands” in The
ITOS Command Subsystem.

$Date: 2006/10/03 19:01:55 $

READ

READ

69

-

- or -

- or -

-

READ (unit [options ...])
READ (unit [options ...]) variable

READ (unit [options ...]) variable , variable ...

unit — int constant, variable, or expression identifying the unit to be read.

variable — identifies a local variable, global variable, or mnemonic.

Options are space seperated and may be specified in any order and include:

DELIM=delimiters

GREEDY

Indicates the delimiters that seperate words. Defaults to ",\t " (comma, tab,
or blank).

Saves the rest of the line in the final variable.

Normally, delimiter-separated words get saved; if there aren’t enough variables
trailing words get lost. Specifying the GREEDY option changes this behavior so
that the final argument gets the rest of the line.

If there are too many variables, i.e. if there are m variables in the READ directive
but only n words in the input line, the final m-n variables are unchanged.

STATUS=variable

Specifies a local or global variable or integer mnemonic to receive the status
from the read operation. States are 1 or greater == SUCCESS, 0 == END-
OF-FILE, -1 == ERROR. If SUCCESS then the value of STATUS will contain
the number of variables minus 1 that had values applied. i.e a STATUS value of
2 indicates 1 variable was set. A value of 1 indicates no values were set or in
other words the line was blank or no variables were given on the directive line.

It is up to the user to test the return variable before attempting another READ.

If STATUS is not specified, the proc will stop with an error condition if the
status is anything other than SUCCESS.

TIMEQUT=seconds

Indicates how long the READ may wait before timing out. Defaults to 1.0
second, 0.0 waits forever. An interactive GO directive causes the READ to im-
mediately time out.
Use the following trick to determine if the READ timed out:

local x, stat

x=0 ; force x to be int rather than string

read(1 TIMEOUT=4 STATUS=stat) x

if (isint(x)) then

rem ; The read timed out (or the line was empty)
else

$Date: 2006/10/03 19:01:55 $

READ 70

rem ; X was read
if (stat .EQ. 0) then
rem ; End of File was reached
endif
endif

For example, if ‘. /test.data’ contains

one two three
four five six
seven eight
nine ten eleven

then:

GLOBAL i,j,k

OPEN (1) "./test.data"

READ (1)

= "one two three" was read.

READ (1) i,j

= "four five six" was read.

= Assigning (string) ‘four’ to global variable i.
= Assigning (string) ‘five’ to global variable j.
k=99

= Assigning (int) 99 to global variable k.

READ (1) i,j,k

= "seven eight" was read.

= Assigning (string) ‘7’ to global variable i.

= Assigning (string) ‘eight’ to global variable j.
= Warning -- k is unchanged.

READ (1 GREEDY) i, j

= "nine ten eleven" was read.

= Assigning (string) ‘nine’ to global variable i.
= Assigning (string) ‘ten eleven’ to global variable j.

See [OPEN], page 49 for how to open a unit. See [WRITE], page 107 for how to write
to an open unit.

$Date: 2006/10/03 19:01:55 §$

REM 71

REM

REM ; comment

The REM directive doesn’t do anything. It’s only purpose is to provide a way for proc
files to echo comments to the event log:

; This comment won’t get echoed to the event log ...
REM ; ... but this one will!

$Date: 2006/10/03 19:01:55 §$

RESET 72

RESET

RESET
This directive may optionally have a preceding slash, as in /RESET.
This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).
The RESET directive sends the control command to the spacecraft FARM which sets the
next expected frame sequence number to zero.

Note that control commands are transmitted immediately, even when in two step com-
mand mode. See [MODE], page 48.

See [UNLOCK], page 102.

$Date: 2006/10/03 19:01:55 §$

RESYNC 73

RESYNC

RESYNC
This directive may optionally have a preceding slash, as in /RESYNC.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RESYNC directive sets the ground’s next expected fram sequence number to the
spacecraft’s next expected frame sequence number.

$Date: 2006/10/03 19:01:55 §$

RETRLIM 74

RETRLIM

RETRLIM number
This directive may optionally have a preceding slash, as in /RETRLIM 3.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RETRLIM directive sets the maximum allowable number of automatic retransmissions
of a command to the spacecraft before operator intervention is required. RETRLIM O turns
off automatic retransmission.

$Date: 2006/10/03 19:01:55 §$

RETRY 75

RETRY

RETRY
This directive may optionally have a preceding slash, as in /RETRY.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The RETRY directive retransmits all commands in the Sent-Queue pending acknowledge-
ment by the spacecraft.

$Date: 2006/10/03 19:01:55 §$

RETURN

RETURN

RETURN

RETURN HALTED
The RETURN directive returns from and terminates the current proc.
In addition, RETURN HALTED for a sub proc causes the calling proc to halt.
Use the KILLPROC directive to terminate all procs (see [KILLPROC], page 40).

$Date: 2006/10/03 19:01:55 §$

76

SCEVENT 7

SCEVENT

SCEVENT severity, evtnum [options]
- or -
SCEVENT severity, evtnum [evtstr]

severity — int constant, variable, or expression identifying the event severity of
0 to 255.

evtnum — int constant, variable, or expression identifying the event number of
0 to 65535.

evtstr — string constant, variable, or expression identifying the event descrip-
tion. Same as the option DATASTR=string below.

Options may be specified in any order and include:

DATA1=integer
Specifies an optional 32 bit integer constant, variable, or expression value. De-
fault is 0.

DATA2=integer
Specifies an optional 32 bit integer constant, variable, or expression value. De-
fault is 0.

DATA3=integer
Specifies an optional 32 bit integer constant, variable, or expression value. De-
fault is 0.

DATA4=integer
Specifies an optional 32 bit integer constant, variable, or expression value. De-
fault is 0.

DATASTR=string
Specifies an optional string constant, variable description of the event. Default
is NULL.

This directive is effectively a NO-OP and is only syntax checked for correctness. It is
only for the purpose of consistancy with STOL procs running on the Triana spacecraft and
no other purpose.

$Date: 2006/10/03 19:01:55 §$

SEND 78

SEND

SEND
This directive may optionally have a preceding slash, as in /SEND.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

$Date: 2006/10/03 19:01:55 §$

SEQPRT

79

SEQPRT

The SEQPRT directive controls sequential prints, which output telemetry data in tables
to files, the display, a printer, or the event log.

Syntax

SEQPRT

seqprt[, interval] [[>]> file] [> dest ...]
Start a sequential print.

seqprt — is a sequential print name, which is the definition file name without
the ‘. sprt’ extension.

interval — is the interval at which data should be printed. If not given, data
is printed as it arrives in telemetry, according to rules given in the
definition file.

file — is the name of the output file. If preceeded by a single greater-
than symbol (>), create or overwrite the file. If preceeded by two
greater-than symbols (>>) create or append to the file.

dest —
printer — PTR | PRT | PRN
display — DSP | CRT

event log —
EVT
SEQPRT CLEAR seqprt | ALL
Stop a sequential print, or stop all sequential prints.
SEQPRT action seqprt
Control the updating of a sequential print.
action —
FREEZE Stop the print from updating.
REFRESH Cause the print to update immediately, even if frozen.
THAW Allow the print to resume updating.
seqprt is the sequential print name.
Discussion

The actual sequential print description file is in one of the directories in the gbl pagepath
and is named with the suffix .sprt.

Normally sequential prints update whenever a value in the sequential print changes;
specifying interval changes this behavior to updating every interval seconds.

$Date: 2006/10/03 19:01:55 $

SET 80

SET

LSET device pid [= par]

device — A device (BITSYNC, PSK, RECORDER, RECEIVER, etc.).

pid — Parameter identification. The name of the particular function being
programmed.

=par — Optional parameter value for pid.

Examples:
SET BITSYNC BR=8.192e03

SET BITSYNC SOURCE1

SET RECORDER REPROPBN=9999

The SET directive is used to send commands to various devices capable of being con-
trolled remotely over a GPIB or RS-232 interface. The definition of devices and their com-
mands are in the file Device.conf. This directive relies on the settings of global mnemonics
to determine which model of a particular device is being used and the communications
setup parameters required for the device. For example, the Device.conf configuration file
may define the commands for two different external devices, a bit synchronizer and an os-
cilliscope (eg.Loral DBS 430, and TEKTRONICS 3430). The global mnemonics for the
devices, found in ITOS_GPIB, specify which device is being used such as:

GBL_DEV_TYPE[O0] BITSYNC
GBL_DEV_MODEL[0] LORALDBS430
GBL_DEV_IF[0] = RS232
GBL_DEV_PORT[0] = /dev/ttya
GBL_DEV_BAUD[0] = 9600
GBL_DEV_CLEN[0O] = 8
GBL_DEV_SBIT[0] =1

GBL_DEV_TYPE[1] = TEKSCOPE
GBL_DEV_MODEL[1] TEK2430
GBL_DEV_IF[1] = GPIB
GBL_DEV_PORT[1] GPIB-ITOS
GBL_DEV_ADDR[1] 4

A default Device.conf file comes with ITOS. The user can modify this file or create their
own Device.conf and set the global gbl devcfgdir to the directory where it is located. This
is an example of the entries that need to be added to the Device.conf file in order to use
the GET and SET directives.

$PIDS # DO NOT ERASE THIS LINE

#

PID FIXED/VARIABLE Comment

$Date: 2006/10/03 19:01:55 $

SET

81
SOURCE1, FIXED # Input source 1
BR, VARIABLE # Bit rate.
REPROPBN, VARIABLE # Reproduce from PBN
$END # DO NOT ERASE THIS LINE - ADD CMDS BEFORE THIS LINE

$MODEL=DSI7700

#

Bit Synchronizer, Model DSI 7700

#

PID:PAR Pair ASCII Cmd String, Comment

$--—————————-— - ——

SOURCE1, "SRC1." # Input source 1

BR, "B%9vI99\ .E9Y . " # Bit rate.
REPROPBN, "%999999%" # Reproduce from PBN
$END

For VARIABLE parameters such as bit rate(BR) shown above a COBOL-style PIC
format enclosed within %’s is used and is described below.

The PIC may contain the following characters:

’+?, ’-2 : The formatted number will begin with a
)+) or)_)‘
’9? : Used to specify field width. Each ’9’ is

used to represent a digit.

r.? : Used for floating point numbers to specify
decimal point placement.

’E’,’e? : Specifies the number to be formatted using
exponentiation using the letter ’E’.

’Z’,’z° : Whenever a ’Z’ appears before the digit
specifier, leading zeros will be suppressed.
By default, the field width is padded with

Zeros.

’V’,’v? : Used to show placement of assumed decimal
point.

AN : Precedes literal characters in the formatted

number string. At this time literals may
only be placed immediately preceding the
exponent character ’E’.

PIC Examples:

NUMBER PIC FORMATTED NUMBER

$Date: 2006/10/03 19:01:55 $

SET

12345 +999999.9
12345 2999999.79
12345 9999

12345.67 Z9.999999E+999
12345 9.999EZ99
123.45 9.9999E99
123.45 9.9E9

123456 9v999\ : E9

82

+012345.0
12345.

2345
1.234567E+004
1.234E4
1.2345E02
1.2E2

1234 :E5

Also see [GET, page 30, [ENABLE], page 24 and [DISABLE]|, page 18.

$Date: 2006/10/03 19:01:55 §$

SETCOEF 83

SETCOEF

SETCOEF mnemonic, cO [, ¢1 [, c2 [, ¢3 [, c4 [, <6 [, c6 [, c7]1]111111]

SETCOEF QUERY mnemonic [, ...]
mnemonic — telemetry mnemonic name.
c0 ... c7 — floating point constants or expressions.
The SETCOEF directive reports or changes analog conversion coefficients.

SETCOEF CHANGE
Unspecified coefficients are assumed 0.0. The analog conversion function is
X+ Xl F e X0+ Xt s X2+ e X2+ X+

SETCOEF QUERY
Reports the current analog conversion coefficients for the specified mnemonics.
The report looks like:

PAHICURR: 0.004884X + -10

- or -
PBATTEMP: 7.11667e-08X"3 + -0.00013295X"2 + 0.1352X + -65.113
- or -
GBL_TLMRATE: (polynomial undefined)
- or -

GBL_GMTOFF isn’t analog; it’s conversion type is DATE

$Date: 2006/10/03 19:01:55 $

SETGRND ’4

SETGRND

SETGRND number
This directive may optionally have a preceding slash, as in /SETGRND 49.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The SETGRND directive sets the ground’s next expected frame sequence number to the
operator specified value.

$Date: 2006/10/03 19:01:55 §$

SETVR 85

SETVR

SETVR number
This directive may optionally have a preceding slash, as in /SETVR 33.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The SETVR directive sets the spacecraft’s and ground’s next expected frame sequence
number to the operator specified value. This directive will send a control command to the
spacecraft.

$Date: 2006/10/03 19:01:55 §$

SHOVAL 86

SHOVAL

SHOVAL value [, value ...]
SHOVAL may be abbreviated SHO.

The SHOVAL directive displays the values of one or more variables, telemetry mnemonics,
or expressions.

If value is a variable or telemetry mnemonic name (i.e., not a complex expression and
not enclosed in parenthesis) the output describes the variable or telemetry mnemonic in
addition to displaying its value.

In the following examples, myvar is a global variable whose value is 7.89 and
APRECOILCURR is a telemetry mnemonic:

SHOVAL myvar
= global myvar: (double) 7.89
SHOVAL (myvar)

= 7.89
SHOVAL 1, 1+2, 1+2+3, 1+2+3+4
= 136 10

SHOVAL aprecoilcurr

= mnemonic APRECOILCURR: (NOVALUE) UNSIGNED O
SHOVAL format ("%08x",-1)

= ffffffff

$Date: 2006/10/03 19:01:55 $

SIM

SIM

| packet |
SIM CHG mnemonic = value [, | 1]
| ALL |

mnemonic — the name of a telemetry mnemonic.
value — a constant or expression.
packet —

The SIM directive controls the internal simulator.

$Date: 2006/10/03 19:01:55 §$

87

SNAP 88

SNAP

SNAP page [, rate]l [>|>> destinationl]

| page
SNAP CLEAR |
| ALL

page — the page to be snapped.
rate —
destination —
> destination —
>> destination —
The SNAP directive controls page snapshots.

SNAP PAGE The SNAP PAGE directive takes a snapshot of a page, or starts a snap process
that repeatedly takes snapshots of a page.

If rate is not specified only one snapshot is taken. If rate is specified, a snap
process will be started which takes a snapshot every rate seconds.

If destination is not specified the snapshot will be printed to the default
system printer.

SNAP CLEAR

$Date: 2006/10/03 19:01:55 §$

SPEED

89

SPEED

SPEED
SPEED
SPEED
SPEED
SPEED
SPEED
SPEED
SPEED

rate

rate PROC name
rate ALL

rate DEFAULT
QUERY

QUERY PROC name
QUERY ALL
QUERY DEFAULT

rate — floating point number, or keyword DEFAULT. DEFAULT makes the proc
run at gbl defprocspeed.

The SPEED directive controls (or reports) how fast proc files execute.

SPEED rate changes the speed of the current proc to one directive every rate seconds.
For example, SPEED .1 changes the current proc’s speed to one directive every .1 seconds.

Similary, SPEED rate PROC name changes the speed of the named proc and SPEED rate
ALL changes the speed of all open procs.

SPEED rate DEFAULT changes the default proc speed (and thus the speed of all procs
running at default proc speed) (SPEED DEFAULT DEFAULT is nonsensical and is not allowed).

Finally, SPEED QUERY reports the speed of the current proc; SPEED QUERY PROC name
reports the speed of the named proc; SPEED QUERY ALL reports the speed of all open procs;
and SPEED QUERY DEFAULT reports the default proc speed.

Procs initially start with the default proc speed gbl defprocspeed.

$Date: 2006/10/03 19:01:55 §$

START 90

START

START proc [(arglist)] [IN path] [AT line] [HALTED] [&]

START QUERY

The START directive starts a proc file or queries for the status of foreground and back-
ground procs.

proc specifies the name of the proc without the ".proc" or it can specify the fully qualified
path name of the proc file such as " /home/mission/procs/startup.proc" which can be used
in place of using the "IN path" argument.

(arglist), IN path, AT line, and HALTED are all optional but if specified must be
specified in the order shown.

(arglist) is the comma separated argument list to the proc. The number of arguments
in arglist much match the number of arguments in the proc file’s PROC directive (see
[PROC], page 63) or you will get a warning message and the missing arguments will be set
to NULL. NULL paramters can be tested by using the ISNULL function call.

IN path specifies the proc file to use. If IN path is not specified, the directories in
gbl_procpath are searched.

AT line specifies which line in the proc file to begin at. 1ine can be either a line number
or a label.

HALTED specifies that the proc should be initially halted.

"&" specifies that the proc starts as a background task in a sub-stol. WARNING:
Telemetry, Command and GPIB directives should not be mixed between foreground and
background procs simultaneously because they could interfere with each other. Especially
when doing Command directives, the proper technique is for a background proc to send
these directives via a [WRITE], page 107 directive to the gbl_stolfifo to the main STOL for
execution. The sub-stol and background proc windows are instantiated as icons rather than
an open window so as not to clutter the desktop. STOL directives and most information
messages are not echoed to the event log/display but fault and error messages are. A
background proc can not start another background proc. The spawned sub-stol process
number is placed in global mnemonic gbl system_pid which can be used later to kill that
process via [KILLPROC], page 40 directive. This is only a basic function of parallel proc
processing and lacks sophistication. For example, the following proc fragment to start a
background proc

GLOBAL pid

start test &

==>STOL_MSG: Background PROC "test" (ID# 123}) started.
==>STOL_MSG: Opened test in /home/itos/procs/test.proc
pid = gbl_system_pid

start query

==>STOL_MSG: No foreground procs are open
==>STOL_MSG: Background PROC "test" (ID# 123}) Running

$Date: 2006/10/03 19:01:55 $

START

See [KILLPROC], page 40 for how to terminate a proc.

$Date: 2006/10/03 19:01:55 §$

91

STOP 92

STOP

STOP
This directive may optionally have a preceding slash, as in /STOP.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The STOP directive aborts the image load currently in progress. If in TWOSTEP mode,
the command buffer will be cleared.

See [LOAD], page 44. See section “Image Loads” in The ITOS Command Subsystem.

$Date: 2006/10/03 19:01:55 §$

STRIPCHART 93

STRIPCHART

The STRIPCHART directive allows the user to chart three kinds of data:
1. Live data arriving less than once a second.
STRIPCHART [expression ...] [option ...]
2. Live data arriving more often than once a second.
STRIPCHART expression [...] FAST [option ...]
3. Data stored in a sequential print file.
STRIPCHART label ... FILE=path [option ...]

expression is any stol expression, enclosed in quotes. Up to four expressions may be listed.

In the first form above, expressions are optional. If none is specified, a dialog is
presented where expressions can be entered. In the second form, all expressions
must be specified in the STRIPCHART directive.

option is any combination of the options discussed below.

label is any label in the first line of the sequential print file. One to four labels may
be plotted.

path is the absolute path to the sequential print file to be plotted.

Three commands modify onscreen stripcharts:
1. Stop data to a stripchart
STRIPCHART FREEZE name
2. Restart data to a stripchart
STRIPCHART THAW name
3. Close a stripchart
STRIPCHART CLEAR name

Names are given to stripcharts with the NAME option described below. name can be
"ALL" in these three commands.

Discussion

The stripchart directive allows charting without prior creation of a plot definition file
(a .plot file) or a graphics page file (a .disp file). The PLOT directive uses .plot files.
makepage can be used to create graphics page files used by the PAGE directive.

The following options are recognized:

BACKGROUND = color
Sets the chart’s background color. Default is black.

FOREGROUND = color
Sets the chart’s foreground color. Default is white.

$Date: 2006/10/03 19:01:55 $

STRIPCHART 94

FAST Starts a chart optimized for high-data-rate mnemonics. This option should be
used with any mnemonic received once a second or more.

This chart is less flexible than non-optimized charts. Maximum and minimum
values for the Y axis should be specified with YMAX and YMIN options when
the chart is created. Non-optimized charts adjust the Y axis as data arrives.
(See "Fast Options" below.) The MAXPOINTS option is not recognized by
fast charts. The x expression must be a time mnemonic. In other kinds of plot,
any STOL expression can be used for the x expression.

HEIGHT = pixels
Sets the chart’s height. Default is 320 pixels.

HOST = name
specifies the host from which live data should be obtained. The default is the
local host.

HOST may not be combined with FILE. See below.

LEFT = pixels
sets the distance from the left side of the screen to the left side of the chart.
Default is 0.

LEGEND = on/off
specifies whether a legend is included with the chart. By default a legend is
supplied if the chart contains more than one graph.

MAXPOINTS = points
sets the maximum number of points which will appear on the chart. When
points are added over the maximum number, the oldest points are removed.
The default value is 200 points. Note that this number can also be changed
while a chart is being displayed via the "options" button.

MAXPOINTS is ignored with FILE and FAST. With FILE, all points in the

file appear on the chart. With FAST, the width of the chart together with
SLOTWIDTH (see below) determine how many points appear on the chart.

NAME = name
Gives the chart a name that can be used in FREEZE, THAW and CLEAR
directives. All stripcharts onscreen have different names. If you try to create a
second chart with a name already in use, the first chart is popped to the top
and no new chart is created. The default if no name is specified is the text of
the first expression.

PORT = number
specifies the server socket from which live data will be obtained. The default is
7777, the data point server’s default.

PORT may not be combined with FILE. See below.

PRINT = on/off
specifies whether a print button is supplied with the chart. Default is on.

$Date: 2006/10/03 19:01:55 $

STRIPCHART 95

TOP = pixels
Sets the distance from the top of the screen to the top of the chart. Default is
71 pixels, just enough to leave the STOL window exposed.

WIDTH = pixels
Sets the width of the chart. Default is 600 pixels.

= "expression"
Specifies the expression used to generate x coordinates for plotted points.
Any STOL expression, enclosed in quotes, may be used. The default is
P@GBL_GMTOFF, the converted value of GBL_GMTOFF.

When used with the FILE option, the expression must be a label from the
sequential print file.

This option cannot be used when FAST is specified. The TIME option, de-
scribed below, is used instead.

YMAX = max
Specifies the value at the top of the Y axis. By default, the Y axis autoscales
to fit the data. When FAST is specified, the default is 100.

YMIN = min
Specifies the value at the bottom of the Y axis. By default, the Y axis autoscales
to fit the data. When FAST is specified, the default is 0.

The following options are recognized only with the FAST option:

SLOTDELTA = sec
The chart area is divided into vertical slots and all data points is placed in the
middle of a slot. sec specifies the time difference between adjacent slots. The
default is 0.1 seconds.

SLOTWIDTH = pixels
Specifies the width of slots in pixels. The default is 3 pixels.

TIME = "mnemonic"
Specifies the time mnemonic to be used as the X value. The default is
GBL_GMTOFF. NOTE that the mnemonic name must be enclosed in quotes.

YDELTA = delta
Labels along the Y axis will be delta apart. If delta is 0.5 and ymin (see above)
is 13.0, then the bottom three labels on the Y axis are 13.0, 13.5 and 14.0.

This option is needed only when the default labels are not satisfactory.

YHASHDELTA = hashdelta
Specifies how far apart the Y axis hash marks are placed.
This option is needed only when the default hash marks are not satisfactory.
Use the stripchart file= form of the directive to view data from a file created by the

SEQPRT directive. Each expression to be plotted must be a label from the sequential print
file. At least one label from the file must be given.

$Date: 2006/10/03 19:01:55 $

STRIPCHART 96

The X option is used to specify the file label that will be used for x coordinates. If X is
not used, the first column in the file is used.

The following option is recognized only when FILE is present:

XNOTIME means that the X variable is not a time variable. By default, X values are
converted to time values.

The following options are NOT allowed when FILE is present:

MAXPOINTS
All points in the file are charted. The chart can be zoomed to an area of interest
by dragging the left moust button.

HOST does not apply when data is taken from a file.
PORT does not apply when data is taken from a file.
TIME Use the X option rather than TIME to specify the X axis label.

Examples

STRIPCHART

Opens an empty chart window. You enter expressions to be plotted via the chart’s option
menu.
STRIPCHART psbatcurr psbatvolt "psbatcurr * psbatvolt" MAXPOINTS=32
Charts the two mnemonics and their product. Only the most recent 32 points are shown.
Notice the quotes around the expression. The simple mnemonic expressions psbatcurr and
psbatvolt can be quoted as well, but that’s not required. Since no time mnemonic is
specified, gbl_gmtoff will be used.
STRIPCHART "p@psbatcurr" "p@psbatvolt" X="hOObtime"

Charts the converted values of the two mnemonics against the time mnemonic hOObtime.
Notice the required quotes around both expressions and the time mnemonic’s name.

STRIPCHART "sin(p@tovolts)" FAST YMIN=-1 YMAX=1 SLOTDELTA=1.0

Charts a single expression. Since FAST is used, the y axis minimum and maximum
values are specified. Data is expected every second.
STRIPCHART tvpb tvp6 tvp7 tvp8 FILE="/usr/tcw.trace/archive/thermal_data.sav"
Charts values from file thermal_data.sav. Data in the columns headed by tvps5, ...,
tvp8 are charted. Since the X option is not used, the first column in the file (other than
tvpb, ..., tvp8) is used. That first column is typically time.

$Date: 2006/10/03 19:01:55 §$

SYSTEM 97

SYSTEM

SYSTEM unix-command
unix-command — A string constant or expression representing a unix command.
The unix command will be processed via sh rather than csh.

Runs the specified unix command/program in the background; results go in the event
log as STOL_EVENT messages. The mnemonic variable GBL_SYSTEM_PID receives the
process id of the unix process started which can be used later to kill that process by a
SYSTEM concat ("kill ", gbl_system_pid). Kill is a special SYSTEM directive. It will
only allow you to kill a process started by a previous SYSTEM directive. If an error occurs
trying to issue the SYSTEM directive, the return value in GBL_.SYSTEM PID will be "-1".
Kill can be passed an optional signal number before the process number in the form of "n"
or "-n" where n is a valid signal number. The default signal if none is specified is “9” which
is SIGKILL which forces a absolute immediate exit of a process. A usefull signal is “15”
which is a SIGTERM which causes a gracefull shutdown of a process but the process might
be blocked or ignore it. See examples below. See Unix Man pages on KILL and SIGNAL
(section 7 on Linux and 5 on Solaris) for the list of valid signals. Note: only the signal
number can be used not the symbolic name.

Some examples:
LOCAL device
device = "/dev/ttyb"
SYSTEM concat ("flush ",device)
flushes pending input and output serial port /dev/ttyb;
SYSTEM date
reports the current date (i.e. Fri Apr 29 18:25:58 EDT 1994); and
SYSTEM "xterm -T \""TEST\"" -fn 12x24"

opens a big font xterm window named TEST. (The quotes are required since the com-
mand contains special chars. If quotes have to be embedded in the string as in the example
above, double quotes have to be used to make STOL understand and a \ in front of the
double quotes to make UNIX not interpret the quotes.

local pid
SYSTEM "xterm"
pid = gbl_system_pid
SYSTEM concat("kill ", pid)
Start an xterm window then later Kill the process started by the last system call.
SYSTEM concat("kill -0", pid)

The alternate kill example above uses an optional signal number of “0” which will not
kill the process. If the process still exists then GBL_SYSTEM_PID will contain the process
number in the kill. It it does not then GBL_SYSTEM_PID will equal “-1”. This is a usefull
test to see if a process is still running.

$Date: 2006/10/03 19:01:55 §$

TFDUMP 98

TFDUMP

The TFDUMP directive allows users to display the contents of telemetry frames as they
arrive from the spacecraft or other data source.

TFDUMP [station] [option] [filter] [[> dest]...]
Start a frame dump.

station identifies the telemetry source.

option ID = id
INT = interval
COUNT = count

BINARY
filter [ADD | DROP] [NOT] [vcid ...]
veid — VCO | VC1 | ... | VC7
dest is a dump destination: filename, printer (ptr[:name]), or display

(DSP or CRT).

TFDUMP OFF option
Stops a packet dump.

option | ALL
| ID = id

TFDUMP QUERY
Reports on currently active packet dumps.

The tfdump directive controls transfer frame dumps. A transfer frame dump is similar
to a packet dump (see [PKTDUMP], page 54), the difference being that the transfer frame
dump displays entire transfer frames.

Specify the station argument to select the data source providing the data you wish
to dump, when more than one source is in use. Valid station names are in the Source
Configuration File, and spacecraft data is the default source. When the data source is from
an archive playback specify "playback" as the source.

All options are arguments and options are as documented for pktdump directive, with the
exception of the filter argument. For transfer frame dump, the filter may contain multiple
virtual channels, but must not contain any packet 1D lists.

$Date: 2006/10/03 19:01:55 §$

TIMEON 99

TIMEON

TIMEON datafile [, [threshold] [,time]] [>|>> dest]
datafile — input/output file name.
threshold — threshold file name.
time — maximum gap between consecutive dates.
dest — output file name.

TIMEON computes the time various spacecraft devices have been powered up daily and
in total.

TIMEON reads a table of values from file. The first column in the table must contain
date values. It optionally reads a 1-column table of thresholds from file threshold. There
should be one threshold for each column (in order) in the table, not including the date
column. Note that either or both files may be compressed (with gzip).

The results are written back to the data file, replacing the original contents, unless
another output file, dest, is specified. Before the original data file is overwritten, however,
it’s contents will be compressed and copied to a backup file. The backup file name is formed
from the original file name, appending a date stamp corresponding to the first data row
in the file and a serial number beginning with zero. Backup files will have the ‘. gz’ suffix
because they are compressed with gzip.

For each row after the first, TIMEON computes the difference between the current row’s
date and the previous row’s date. For each column in the row except the date column, if the
value is greater or equal to the threshold, the device is powered. If the preceding reading
showed the device powered, it adds the difference in the dates to the daily and grand totals
for the column.

TIMEON keeps track of the day in which each date falls. When it encounters a new day, it
replaces the previous day’s table entries with a single entry giving the date and total times
on for each device for that day. If, while processing, it encounters a time value, it adds the
time to the daily and grand totals for the column.

For example:

If we begin with this data file:

date, vall, val2, val3, val4d

94-100-12:34:56, 3.2, 1, 5, 3.1e8
94-100-12:44:57, 3.2, 0, 5, 3.1e8
94-100-12:54:58, 3.2, 1, 5, 3.1e8
94-100-13:04:59, 3.2, 1, 5, 3.1e8
94-101-12:24:60, 3.2, 1, 5, 3.1e8
94-101-12:34:61, 3.2, 1, 5, 3.1e8
94-101-12:44:62, 2.9, 1, 5, 3.1e8
94-101-12:54:63, 2.0, 1, 5, 3.1e8
94-101-13:04:64, 2.5, 1, 5, 3.1e8
94-101-13:14:65, 3.0, 1, 5, 3.1e8

And this thresholds file:

$Date: 2006/10/03 19:01:55 $

TIMEON 100

3.0 vall
1.0 val2
7.2 val3
le vald

Execute dsp_timeon and get:
date, vall, val2, val3, val4d
94-100-00:00:00, 30:03, 20:02, 0, 30:03
94-101-00:00:00, 20:02, 50:05, 0, 50:05
Totals: 50:05, 01:10:07, 0, 01:20:08
New data may be appended to this file. The ‘Totals’ line will be ignored when the file

is read on subsequent runs, the existing daily totals will be preserved or augmented, and
new grand totals will be calculated.

Note that any non-numeric values in the thresholds file will be ignored along with any
numbers after the first in each row. If no thresholds file is specified, default thresholds of
0.5 are used for each column.

See section “Plot data files” in ITOS Plotting Users’ Guide for the formatting rules for
the data values in the data and threshold files.

$Date: 2006/10/03 19:01:55 §$

TIMEOUT 101

TIMEOUT

TIMEOUT number
This directive may optionally have a preceding slash, as in /TIMEOUT 20.

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).

The TIMEQUT directive sets a time interval over which the ground expects to receive a
status report (CLCW) from the spacecraft about a command that has been transmitted.

$Date: 2006/10/03 19:01:55 §$

UNLOCK 102

UNLOCK

UNLOCK
This directive may optionally have a preceding slash, as in /JUNLOCK

This directive is only allowed when commanding is enabled (see [ENABLE],
page 24).
The UNLOCK directive sends a control command to the spacecraft which unlocks the
spacecraft so it can accept CMD commands.

Note that control commands are transmitted immediately, even when in two step com-
mand mode. See [MODE], page 48.

See [RESET], page 72.

$Date: 2006/10/03 19:01:55 §$

VC 103

VC

VC number
This directive may optionally have a preceding slash, as in /VC 1

The VC directive specifies the virtual channel over which subsequent spacecraft commands
shall be transmitted.

$Date: 2006/10/03 19:01:55 §$

VERIFY

104

VERIFY

VERIFY [loadfile] [, dumpfile] [> reportfile]

loadfile and dumpfile are strings (either quoted strings or string expressions),
and reportfile is string or parenthesized string expression.

loadfile is the name of an image load file. If 1loadfile contains a / it is the
pathname to the file; otherwise loadfile names the file in the default load
file directory (global mnemonic gbl imgloaddir). If omitted, the value of most
recently loaded file (global mnemonic gbl_loadfile) is used.

dumpfile is the name of an image dump file. If dumpfile contains a / it is the
pathname to the file; otherwise dumpfile names the file in the default dump file
directory (global mnemonic ghl.imgdumpdir). If omitted, the value of most
recently dumped file (global mnemonic ghl dumpfile) is used.

reportfile is the name of a report file. If reportfile contains a / it is the
pathname to the file; otherwise reportfile names the file in the default report
file directory (global mnemonic gbl imgreportdir). If omitted, the report will
be written to a file with the same name as the dumpfile but with the extension
"RPT". The global mnemonic gbl reportfile contains the name of the most
recently created report file.

The VERIFY directive is used for image verification. A byte-by-byte comparison of the
data in each file is performed and the differences are shown in a comparison report which is
located in gbl reportfile. The global mnemonic gbl_miscmp contains the number of miscom-
pared bytes. The global mnemonic gbl cmpdone is set to the value of 1 when the compare

is done.

If desired, VERIFY can be used to compare two load files or two dump files.

$Date: 2006/10/03 19:01:55 §$

WAIT

WAIT

105

[I.-JAIT [howlong] [UNTIL (condition)] [optiomns ...]

howlong — A float value indicating the maximum amount of time, in seconds, to
wait. If not specified or zero, the wait is indefinite. If negative and no condition
is specified then the wait is ignored. If negative and condition is specified then
wait will not end until the condition is true. For historical compatibility, may
optionally be followed by a comma and another float value; the second value is
ignored. This option is depricated and will no longer be supported.

condition — a condition is a STOL expression containing telemetry mnemonics
that when evaluates TRUE will cause the wait to end. If no mnemonics are in
the condition expression then the expression will be reevaluated once a second
until true. If howlong is specified then the wait will end after that time period
expires even though the condition is still false.

options — space seperated list of options in any order to include:

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive
the status from the wait condition. States are 1 == SUCCESS,
0 == TIMEOUT. If SUCCESS then the condition was met. If
TIMEOUT then howlong time has elapsed and the condition has
not been met.

VERBOSE This flag causes values of for all mnemonics in condition to be
displayed as they change.

The WAIT directive is used to temporarily pause a proc. Some examples of how the
WAIT directive is used:

; wait three seconds

wait

3

; send a command and wait for end-item verification
local orgtemp

orgtemp = heatertemp ; heatertemp is a database mnemonic
/turnonheater

wait

until (heatertemp .gt. (orgtemp + 2)) ; if heater was turned on,
; heatertemp should rise

; above, with a five second timeout
local orgtemp, success

orgtemp = heatertemp

/turnonheater

wait

5 until (heatertemp .gt. (orgtemp + 2)) status=success

$Date: 2006/10/03 19:01:55 §$

WAIT 106

if (success) then
; actually got end-item verification

else
; timed out - did not get end-item verification

endif

; wait until a specific time (works because an absolute date minus an
; absolute date is a relative time, and a relative time can be converted

; to float; the expression reduces to ‘‘wait howlong’’)

local x
x = 00-199-14:23:00

wait x - p@gbl_gmtoff
See [GOJ, page 34.

$Date: 2006/10/03 19:01:55 §$

WRITE 107

WRITE

@RITE (unit [options ...]) value [, value ...]

unit — int constant, variable, or expression identifying the unit to be read.
value — identifies a local variable, global variable, or string.
Options are space seperated and may be specified in any order and include:

NOEOL Specifies that no end of line character ("\n") is output after all values are
output. Default is to send an EOL.

STATUS=variable
Specifies a local or global variable or integer mnemonic to receive the status
from the write operation. States are 1 == SUCCESS, 0 == CONNECTION
CLOSED, -1 == ERROR.

It is up to the user to test the return variable before attempting another
WRITE.

If STATUS is specified the proc will continue regardless of the status value.
Otherwise proc will stop with any condition other than SUCCESS.

Writes ascii data to a device or file. Embedded “\” sequences are converted to actual
hex byte codes for the following:

\a ==> 0x07 (bell), \b ==> 0x08 (backspace),

\f ==> 0x0C (formfeed), \g ==> 0x07 (bell),

\n ==> 0x0A (newline), \r ==> 0xO0D (carriage return),
\t ==> 0x09 (horz tab), \v ==> 0xOB (vert tab),

\\ ==> 0x5C (backslash), \O ==> 0x00 (null).

Some examples:

OPEN(1) "/dev/ttyb"
WRITE(1) "5/8 = ", 5/8, "; 5.0/8.0 = ", 5.0/8.0

writes 5/8 = 0; 5.0/8.0 = 0.625 to serial port b;

LOCAL evtlog
LOCAL fstatus

evtlog = 5
OPEN(evtlog) (gbl_evtfifo), write
WRITE(evtlog status=fstatus) "hi mom"
if (fstatus .LT. 1) then
ask "WRITE to event log failed!"
return halted
endif

writes hi mom as a NULL_EVENT to the event log.

OPEN (1) "testhost:7000"
WRITE (1 NOEQOL) "This is a test\r"

$Date: 2006/10/03 19:01:55 $

WRITE 108

writes “This is a test\r” to testhost computer on port 7000. The string has a carriage
return at the end and no newline.

See [OPEN], page 49 for how to open a unit. See [READ], page 69 for how to read from

an open unit.

$Date: 2006/10/03 19:01:55 §$

ZERO 109

ZERO

The ZERO directive clears ITOS telemetry counters.

Syntax

ZERO
Clear all active ITOS telemetry counters.

Discussion

The zero directive clears all active ITOS telemetry counters. This includes all counters
updated by frame_sorter and t1mClient processes. Note that only counter being updated
by running processes are reset. If the telemetry subsystem is disabled or is not acquiring
telemetry, the counters will not be changed. Counters are cleared automatically when
telemetry processing is initiated.

$Date: 2006/10/03 19:01:55 §$

